
Applying Blockchain to Energy 
Delivery Systems
Team: sdmay20-12
Website: sdmay20-12.sd.ece.iastate.edu
Faculty Advisor: Professor Manimaran 
Govindarasu
Client: Grant Johnson, Cyber Security 
Research Manager for Ames Laboratory

CPRE/SE/EE 492 Spring 2020

Narrated By: Dakota



Concerns With Energy Delivery Systems:
• Current Systems Have Flaws:

• Uses public internet infrastructure
• Single point of failure 
• They’re susceptible to attacks

• Our Client Hypothesizes Blockchain Can Strengthen Systems:
• Allows creation of a private & permissioned network
• Blockchains are hosted over several nodes

• Our client wants research on how to develop a blockchain & it’s 
performance
• It could be wrong or possibly add more problems than it solves.

Sdmay20-12: Project PlanNarrated By: Dakota



What’s Wrong & How We Plan To Address It
• Problem Statement:

• Energy Delivery Systems are deployed in an environment that is 
geographically distributed utilizing public internet infrastructure for 
communications. The integrity of measurements, commands, and 
authenticity of control devices performing communication are critical 
for trusted operations.

• Proposed Solution:
• Develop a secure network for a geographically diverse Energy Delivery 

System by using blockchain to develop this network to make it more 
reliable and secure.

Sdmay20-12: Project PlanNarrated By: Dakota



Our Solution:

Sdmay20-12: Project PlanNarrated By: Dakota

Our plan is to develop 4 modules:

1. UI: Uses API to interact with blockchain 
via smart contracts

2. API: Allows UI to interact with blockchain 
via smart contracts

3. Blockchain: Multiple, separate nodes, 
each containing a ledger, make up the 
blockchain. Smart Contracts allow 
authorized devices (&API) interact with 
the BC

4. Publishers: Decodes and Posts data from 
authorized devices to the BC when 
actively running



Functional Requirements:

Sdmay20-12: Project PlanNarrated By: Keegan

UI API Blockchain (BC) & 
Smart Contract (SC)

Publishers & 
Subscribers

● Used via web 
browser

● Works 
independently

● Users can:
○ Make requests 
○ Display returned 

data
○ Issue commands to 

Publishers to 
start/stop 
publishing data

● Requires 
authentication 
for use

● Uses BC Nodes 
to authenticate

● Allows use of 
Smart Contract 
functions

● Has ≥5 organizations
● Uses raft consensus
● Has multiple nodes as 

orderers
● Supports read, update, 

delete, & query data 
functions

● Stores records on the 
ledger

● Defines 2+ endorsing 
nodes for consensus

● 3 Publishers running, 
each publishing to 1 BC 
organization 

● Publishers sends BC the 
data decoded from some 
PCAP file.

● Publisher sends newly 
published record IDs to 
Subscriber

● Upon receiving new 
record ID, Subscriber 
queries the BC using the 
new ID



Constraints & Considerations
• Constraints:

• No budget
• Must use JavaScript, blockchain, & Hyperledger Fabric
• Hardware hosting the network has storage limitations

• Considerations:
• Original software choice for framework was depreciated
• Software choices must work with an API
• Working with live data, possibly operated on in real time

Sdmay20-12: Project PlanNarrated By: Anthony



Possible Risks Mitigation Action

● Blockchain’s possibly 
wrong for a solution.

● Work with client & PowerCyber to determine if there’s 
some use case for implementing blockchain.

● Lack of domain knowledge 
could lead to simple 
mistakes.

● Visit PowerCyber, interview domain experts, asking 
questions to the client and advisor when necessary. 

● Integration could fail ● Automate integration, maintain documentation and 
acceptance tests.

Sdmay20-12: Project PlanNarrated By: Keegan



Project Schedule:
• Milestones:

• Gather all requirements
• Understanding of the domain
• Configuring an example BC
• Initial Deployment of BC
• BC works with API & devices
• BC has 5+ orgs
• API initial build
• API exposes S.C functions
• UI displays in web browser
• UI works with API to use S.C.
• UI displays correct data
• Integrate BC into given system
• Successful end-to-end test

Sdmay20-12: Project PlanNarrated By: Keegan



A Functional Decomposition

Narrated By: Keegan Sdmay20-12: Project Design



Detailed Design: Blockchain

Sdmay20-12: Project DesignNarrated By: Steven

• NASPInet: 
A standard for the 
infrastructure of 
synchrophasor 
communication 
networks.



Detailed Design: Blockchain
• We used HyperLedger Fabric for a permissioned distributed framework containing:

• Organizations: groups interacting in the system.

• Peers: hosts ledger & chaincode. The ledger holds our database. The chaincode, or Smart 
Contract, is a modular set of code (contract) executed for reading/writing from/to the 
Ledger.

• Certificate Authority Servers: primary authentication method for users/external systems 
to interact with the blockchain network. Uses certificates for authenticating users.

• Orderers: used for validating Ledger updates by peers.

• Ordering Service: formed from all orderers together, validates a transaction submitted by a 
peer using raft consensus.

• Publisher: a tool for publishing synchrophasor data to the blockchain.

Sdmay20-12: Project DesignNarrated By: Steven



Detailed Design: Blockchain

Sdmay20-12: Project DesignNarrated By: Steven



Detailed Design: API
• A RESTful web service utilizing Node.js, 

Express.js, and sdmay-fabric-wrapper. 

• Accepts query/user registration requests 
from UI.
• API selects appropriate certificate & formats 

a request to execute a smart contract
• Hands off returned value to UI

• Maintains a wallet, storing registered users’ 
certificates.

Sdmay20-12: Project DesignNarrated By: Jacob



Detailed Design: UI
• The UI is composed of two main sections:

1. The Dashboard contains:
• A station status board
• A line graph showing stations’ frequency 

deviations as well as one showing blockchain 
publisher frequencies

• A metric outlier list
• An area displaying phasor data for the 

stations.

2. The Blockchain Command Center
• Allows user to retrieve metrics, register a 

blockchain user, and/or to start the publishers.

Sdmay20-12: Project DesignNarrated By: Katie



Operating Environment
• API, UI, and blockchain run on 

linux-based virtual machines

• Hardware Used:
• Provided Servers
• Phasor Data Concentrator 

Publishing Data
• Personal & provided work PCs

Sdmay20-12: Project DesignNarrated By: Katie

• Software Used:
• JavaScript
• CouchDB
• React.JS
• Node.JS
• Hyperledger Fabric
• Ubuntu Server



Testing Process
• Functional Testing:

• Unit Testing: All individual tasks had 1+ tests for each component.

• Integration Testing: We tested a deployed blockchain network to 
ensure correctness when integrating each module. 

• Tested if blockchain can accurately execute smart contracts & 
update all nodes. 

• The API & UI tested separately by running commands through 
the UI or API and comparing the results against known data.

• System Testing: We did end-to-end tests, including a test to ensure 
user has access the UI, can query data with the UI, using the API to 
execute said query on the blockchain, then comparing results with 
the expected results.

Sdmay20-12: Project TestingNarrated By: Anthony



Testing Process Continued
• Non-functional Testing

• API: Unit tests for query response times for each endpoint.
• Blockchain: It’s difficult. 

• Used HyperLedger Fabric CLI to test basic queries & establishing a connection 
with the network. 

• We tested latency and throughput as well to get the correct configuration.
• Smart Contract Layer: Used an eslint rule to ensure that there is JSDoc for all 

controllers, models, functions, classes, etc.
• UI: Automated acceptance tests in place that simulate loss of communication 

between the UI and API, and loss between blockchain and API.

Sdmay20-12: Project TestingNarrated By: Anthony



Project Demonstration

Sdmay20-12: Project DemoNarrated By: Katie



Sdmay20-12: Project DemoNarrated By: Katie

https://docs.google.com/file/d/18-Xj0iVQX9u3MFIqq9AI-q7no7XzGL2E/preview


https://docs.google.com/file/d/1VT6UdW-jN6mm3dnpFOYLLFM6B2ZtLige/preview


What We Learned
• Initially handling recording 0.4metrics/second

• Adjusting blockchain network configuration 
landed us a final rate of 3m/s

• The goal: record 60m/s on 3 different 
organizations, concurrently. 

• We modified chaincode & system publishing to 
the network to send 1 request/second, each 
request containing 60 metrics.

Sdmay20-12: Project TestingNarrated By: Steven



Engineering Standards and Design Practices
• Agile Software Development

• Test-driven Development

• Continuous Integration & 
Deployment

• Peer Reviews

• NASPInet Standard

• IEEE-C37.118-2005

Sdmay20-12: Standards & PracticesNarrated By: Jacob



Task Responsibilities
• Anthony Cosimo - (Test Engineer):

• Worked on API, testing for UI, and Publisher. Also worked on PCAP data decoding. 

• Jacob Dawson - (Project Manager):
• Allocated issues to team, worked on API, wrapper, decoding and publishing PCAP data.

• Keegan Bloedel - (API Architect):
• Worked on API, wrapper, and decoding PCAP data that we are getting from PowerCyber

• Katherine Ringgenberg - (UI Architect):
• Designing, implementing, and testing the user interface

• Steven Rein - (Blockchain Architect):
• Implemented blockchain network & chaincode. Worked on decoding PCAP data & minor API 

changes.

• Dakota Moore - (Cybersecurity Manager):
• Worked on BC research, security aspects/implementations, and developed most of the class 

deliverables.

Sdmay20-12: ConclusionNarrated By: Jacob



Moving Forward
• Real time data aggregation mechanisms

• Linking in real time data sources

• Experimentation with consensus settings

• Targeted cyber security testing

• Performance of Cloud hosting vs. current solution

• Blockchain publishing performance with multiple subscribers

Sdmay20-12: ConclusionNarrated By: Jacob



Project Q&A

Sdmay20-12: Project Q&A


