

Applying Blockchain to Energy Delivery Systems

FINAL REPORT

Team:​ sdmay20-12
Client:​ Grant Johnson

Adviser:​ Manimaran Govindarasu

Team Members:
Anthony Cosimo - ​Test Engineer
Jacob Dawson - ​Project Manager
Keegan Bloedel - ​API Architect

Katherine Ringgenberg - ​UI Architect
Steven Rein - ​Blockchain Architect

Dakota Moore - ​Cybersecurity Manager

sdmay20-12@iastate.edu
https://sdmay20-12.sd.ece.iastate.edu

Revised: 26 April 2020

Executive Summary

Engineering Standards and Design Practices
● Agile Software Development
● Test-driven Development
● Continuous Integration and Development
● Peer Reviews
● NASPInet Standard

Summary of Requirements
● API

○ API shall expose Smart Contract functions to Web Requests from the User
Interface

○ API shall still be functional when the Blockchain network is down
● Blockchain Network

○ Blockchain Network shall have a minimum of five nodes
○ Blockchain Network shall have multiple orderer nodes

● Smart Contract Layer
○ Functions within the Smart Contract Layer shall be able to create and query data

stored on the ledger
● User Interface

○ Allow user to display Blockchain performance data
○ Allow user to query data stored in the Blockchain network
○ Allow user to issue commands to the Publishers to start and stop the stream of

data to the Blockchain Network.
○ Shall remain functional when the API is down

● Publishers
○ Publish PDC synchro-phasor data to the blockchain by parsing information out of

TCP packets from a pcap file.
○ Must have the ability to start and stop publishing through messages received.

● System-level
○ Each system shall be fault tolerant to other systems.

■ For example, if the Blockchain Network is down, the API shall return an
appropriate error code to the UI, indicating that the Blockchain Network is
down. The UI will then display a message notifying the user of the
Blockchain Network being down.

○ Each component shall be deployed on Linux virtual machines made available
through PowerCyber resources.

2 sdmay20-12

Applicable Courses from Iowa State University Curriculum
● COM S 309: Software Development Practices
● COM S 319: Construction of User Interfaces
● S E 329: Software Project Management
● S E 339: Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses
● Knowledge of HyperLedger Fabric and other HyperLedger technologies
● Knowledge of Blockchains concepts applicable to the problem domain

○ Orderers
○ Self-Signing Certificates
○ Peer interactions
○ Raft Consensus

● Understanding and implementation of Docker tooling for containerized applications

3 sdmay20-12

Table of Contents

1 Introduction 6

1.1 Acknowledgement 6

1.2 Problem and Project Statement 6

1.3 Operational Environment 7

1.4 Functional Requirements 7

1.5 Non-functional Requirements 8

1.6 Intended Users and Uses 9

1.7 Assumptions and Limitations 10

1.8 Expected End Product and Deliverables 11

2 Specifications and Analysis 12

2.1 Proposed Design 12

2.2 Development Process 15

2.3 Design Plan 15

3 Statement of Work 16

3.1 Technology Considerations 17

3.2 Project Tracking Procedures 18

3.3 Project Timeline 19

4 Testing and Implementation 21

4.1 ​ Process of Testing 22

4.2 Interface Specifications 22

4.3 Hardware and Software 23

4.4 Functional Testing 23

4.5 Non-Functional Testing 24

4.6 Results 25

4 sdmay20-12

5 Closing Material 28

5.1 Conclusion 28

5.2

5.3

References

Resources

28

28

6

6.1

6.2

6.3

Appendices

 ​Operation Manual

 ​Previous Design Versions

 Project Code

29

29

31

31

5 sdmay20-12

List of Figures
Figure 1: Use Case Diagram
Figure 2: Architecture Diagram
Figure 3: Level 0 Diagram
Figure 4: API Level 1 Diagram
Figure 5: Blockchain Level 1: Diagram
Figure 6: UI Level 1: Diagram
Figure 7: Gitlab Issues example
Figure 8: Gantt Chart
Figure 9: Process of testing
Figure 10: NASPInet Conceptual Architecture Diagram
Figure 11: A Conceptual Architecture Diagram For Our Blockchain
Figure 12: Bar Chart Comparing Block Timeout Configurations
Figure 13: Bar Chart Displaying Publishing Improvements

1. Introduction
1.1. Acknowledgement
Our team would like to thank and acknowledge PowerCyber Labs for allowing us to use
their compute resources, Manimaran Govindarasu for advising our project, and Grant
Johnson for being the client to our project.

1.2. Problem and Project Statement
1.2.1. Problem Statement

Energy Delivery Systems are deployed in an environment that is geographically
distributed utilizing public internet infrastructure for communications. The integrity
of measurements, commands, and authenticity of control devices performing
communication are critical for trusted operations.

1.2.2. Proposed Solution
The purpose of this project is to develop a blockchain Energy Delivery System
solution to solve the problem statement. The project is driven by the need
described in the problem statement above, to create a secure network for a
geographically diverse Energy Delivery System. To help mitigate security
concerns, the use of blockchain technology would provide a secure network for
managing Energy Delivery Systems by removing the dependency on a central
service. Additionally, a permissioned blockchain system ensures a higher level of
security when concerned with cyber attacks similar to a fifty-one percent attack.
With this project we hope to deploy a permissioned blockchain system for

6 sdmay20-12

interaction between devices on an Energy Delivery System and users managing
those devices.

1.3. Operational Environment
The operating environment for this project is servers that will store the project
and other data we may use, such as simulation data. Therefore, it should not be
subject to any harsh weather conditions, and the servers should be properly
maintained. These servers will be linux-based and deployed on a network that
will allow for secure permissioned communication between all nodes.

1.4. Functional Requirements
1.4.1. API

● The API shall expose the Smart Contract functions to Web
Requests from the User Interface and/or Devices.

● The API calls shall be authenticated to the Blockchain Node
System.

● When the Blockchain network is down the API shall return an
appropriate error code indicating the loss of the Blockchain
Network.

1.4.2. Blockchain Network
● The Blockchain Network shall consist of at least five organizations

with two nodes each for transaction consensus.
● The Blockchain Network shall consist of multiple nodes to act as

orderers.
● The Blockchain Network shall use Raft consensus for the ordering

service and the deterministic consensus algorithm.
1.4.3. Smart Contract Layer

● The Smart Contracts shall implement the blockchain functions to
read, update, delete, and query data stored on the ledger.

● Users that are assigned to a channel are the only users allowed to
utilize the Smart Contracts functions made available to that
channel.

● Each Smart Contract shall define more than one endorsing node
for consensus.

1.4.4. User Interface
● The User Interface shall be rendered in a modern web browser.
● Given the API is down the User Interface shall remain functional.
● A user shall be able to view the results of metrics and

measurements they had previously requested.
● A user shall be able to start and stop the flow of data to the

Blockchain Network.

7 sdmay20-12

1.4.5. Publishers
● Three Publishers shall run, each publishing to a single blockchain

organization.
● The Publishers shall send synchro-phasor data to the blockchain.

The synchro-phasor data should be retrieved from a PCAP file.
● The Publishers shall have the ability to be stopped and started

from the User Interface.
1.4.6. Operational Environment

● The blockchain network shall run on a linux-based virtual machine
provided by PowerCyber resources.

● The API shall run on a linux-based virtual machine provided by
PowerCyber resources.

● The User Interface shall run on a linux-based virtual machine
provided by PowerCyber resources.

○ The User Interface should be interacted with using a
modern web browser, Chrome will be the supported
browser.

1.5. Non-functional Requirements
1.5.1. API

● The API shall produce query responses in under 10 seconds.

● The API shall have continuous integration and automated
deployment.

1.5.2. Blockchain Network

● Each node on the network shall be run using Docker containers to
allow for reliability when run on different types of machines.

● The Blockchain Network shall be deployed to PowerCyber
resources by implementing a CI/CD pipeline.

● The Blockchain Network should be able to run in a Linux-based
system via the services provided by Amazon Web Services,
however this is not a direct stipulation by the client, just a potential
for additional complexity if needed.

1.5.3. Smart Contract Layer

● The Smart Contract Layer shall have automated deployment and
automated testing.

8 sdmay20-12

● The Smart Contract Layer shall make updates to the Blockchain
Network.

● The Smart Contract Layer controllers and models shall contain
documentation that describe their purpose and intended use.

● The Smart Contract Layer shall have unit tests for all controllers.

1.5.4. User Interface

● If the blockchain network is not available, the User Interface shall
display loss of communication to the user.

1.5.5. Maintainability

● The documentation made available through the project’s wiki is
descriptive enough for the client to understand how to modify the
project properly when needed.

● When the client wishes to modify the project, the project shall not
be difficult to modify.

● Continuous Integration and Continuous Deployment can run all
tests and deploy to the necessary environments as needed by the
client.

1.6. Intended Users and Uses
Our Energy Delivery System has two main types of users: human users and
devices. The use cases of these users consists of the following:

1.6.1. Querying metrics and measurements from the blockchain system. This is
done by the human users.

1.6.2. Periodically post updated measurements. This is done by the devices,
although there is potential for the human users to make changes to the
domain specific data, in cases of errors with metrics or measurements.

These use cases and users may have overlapping interactions with the system
as mentioned, but generally the interactions consist of the primary user in each
use case, as mentioned above.

9 sdmay20-12

Figure 1: Use Case Diagram

1.7. Assumptions and Limitations
1.7.1. Assumptions

● Server hardware and operating system environment are made
available through PowerCyber, and these resources are sufficient
for the development.

● We are provided access to devices that use PowerCyber.

1.7.2. Limitations
● There is no budget for the project, thus, we are constrained to

using PowerCyber resources.
● If the PowerCyber resources are found to be insufficient, the

sponsor will either arrange for different resources or modify the
scope to work with the existing resources.

● Hyperledger Fabric must be used as the permission-based
distributed ledger framework.

● All Hyperledger Fabric related code must be written in JavaScript.

1.8. Expected End Product and Deliverables
1.8.1. Utility for Publishing Data To Blockchain Network (Publisher)

There will be a utility for publishing data to the Blockchain Network. The
Publisher will be publishing syncho-phasor data to three organizations
within the Blockchain.

10 sdmay20-12

1.8.2. A Fully Functional Blockchain Network
There will be a Blockchain Network that is running within Virtual Machines
within the PowerCyber network. The nodes in the Blockchain Network will
help to endorse information updates to the ledger, provide immutability of
the data within the ledger, and be fault tolerant to losses of nodes within
the network. Communication with these nodes will be done by a
multi-node ordering service. Unlike other blockchain systems, the orderer
will allow our data to be deterministic instead of probabilistic.

1.8.3. Authenticated Call from API to the Blockchain Network
There will be an API that can utilize the Smart Contracts in order to
create, read, update, delete, and query data available on the Blockchain
Network. All calls to the Smart Contracts from the API shall be
authenticated and verified by the allowed participants in each channel.
The Smart contracts will be able to receive data from the nodes along
with updating the data on the nodes.

1.8.4. Web-based User Interface
The web-based user interface will contain web pages that will allow users
to query and view metrics, view blockchain frequency statistics, and view
statistics based on the metrics stored in the blockchain. The user
interface will also give the user the ability to register blockchain users and
start and stop blockchain publishers for the different organizations.

1.8.5. Project Documentation
There will be an “operation manual” that lives within the project repository
that describes how to deploy updates to the Smart Contracts, Blockchain
Network, API, and Web-based User Interface. This manual will also have
documentation regarding the development environment setup and
required dependencies. This is close to the same manual that can be
seen in ​Appendix I​.

1.8.6. Continuous Integration and Deployment Infrastructure
There will be a CI/CD solution in place for the project. Continuous
Integration will run on all merge requests and will run on the master
branch weekly to ensure that the master branch remains clean.
Continuous deployment will be available for the blockchain network, API,
and web-based user interface.

11 sdmay20-12

2. Specifications and Analysis
2.1. Proposed Design

The software solution consists of the following components: a User Interface, an
API, and a Blockchain Network. The API receives requests from the User
Interface to view performance data and issue operator commands to PowerCyber
devices. The API will authenticate those requests with the Membership Service
Provider. After a request has been authenticated, the API will make a request to
run a smart contract on the Blockchain Network that either queries performance
measurements or updates operator commands for the PowerCyber devices.

Figure 2: Architecture Diagram (above)

12 sdmay20-12

Figure 3: Level 0 Diagram (above)

2.1.1. API
● The API will run smart contracts when new performance data has

been received by a PowerCyber Device.
● The API will run smart contract when an authenticated user

requests to view performance data.

Figure 4: API Level 1 Diagram

2.1.2. Blockchain Network
● The Blockchain Network will report ledger updates to the API.
● The Blockchain Network will receive requests to run smart

contracts from the API.

13 sdmay20-12

● Given that the entity who has requested to run a Smart Contract is
authorized for that requested data, the Blockchain Network will run
that Smart Contract in order to update the ledger.

Figure 5: Blockchain Network Level 1 Diagram

2.1.3. Publisher
● Given that the Publisher is authenticated with the Blockchain

Network and has proper permissions, the Publisher will be able to
post data to the Blockchain Network.

● Given that the Publisher is running, the Publisher will be able to be
stopped.

● Given that the Publisher is stopped, the Publisher will be able to
be started.

2.1.4. Smart Contract Layer
● Given that the entity who is requesting to query entries via a Smart

Contract is authorized to do so, the Smart Contract Layer will be
able to query entries in the Blockchain Network.

● Given that the entity who is requesting to create an entry via a
Smart Contract is authorized to do so, the Smart Contract Layer
will be able to create an entry in the Blockchain Network.

● Given that the entity who is requesting to update to an entry via a
Smart Contract is authorized to do so, the Smart Contract Layer
will be able to create an update to an entry in the Blockchain
Network.

2.1.5. User Interface
● The User Interface will allow a user to request PowerCyber Device

metrics.

14 sdmay20-12

● The User Interface shall allow the user to create a new blockchain
user.

Figure 6: UI Level 1 Diagram

2.2. Development Process
Our team used an agile approach to the project. We used two-week sprints with a
retro and demo at the end of each sprint as necessary. For all merge requests,
there were tests that accompanied all new work introduced into the master
branch. We followed a Test-Driven Development process for the project that
helped us accompany all new work in merge requests with tests. All merge
requests were required to pass all component and system-level tests, and be
reviewed and approved by at least one other member on the project.

2.3. Design Plan
In order to determine if utilizing a blockchain network is a feasible solution for
maintaining the integrity of communication between control devices, we first had
to determine the optimal configuration for the blockchain network. Our blockchain
network needed to handle at least 60 frames/second since PDCs produce
measurements at a rate of 60hz. Eventually, we arrived at a blockchain
configuration with a Batch Timeout value of 10ms. The Batch Timeout value is
the amount of time the ordering service will wait before validating a batch of
transactions. With this low value, we decreased latency. Additionally, we
designed the chaincode to accept a list of measurements. By doing so, devices
publishing to the network could concatenate results through some form of
middleware service between the devices and the blockchain network. A deeper
explanation of how the configuration and design decisions were made can be
found in the 4.6 Results section.

Then, we needed a way to show the PMU data and blockchain network
performance to the user. We decided to implement a user interface that shows
graphs depicting the frames / second being published over time, a section for
displaying the recent phasor values for specific PMUs, and any errors with
published data. In order to display this information to the user, we decided to
implement the API and UI. The API processes requests from the UI and makes

15 sdmay20-12

requests to Smart Contracts using the Hyperledger Fabric Node SDK when
necessary.

At this point in the project, we needed to simulate a PDC publishing
measurements to the blockchain network. To do this, we decided to implement
the Publisher component. This component decodes synchrophasor requests
found in a PCAP file. These requests include data frames and configuration
frames that we use to properly decode PMU data. Then, we aggregate 60 frames
of PMU data into one request per second to the blockchain network.

After implementing the Publisher, we needed to have some notion of acting as a
subscribed entity to this PDC data. We decided to implement a Subscriber
component. Before a Publisher begins to publish PDC data to the blockchain
network, the Publisher establishes a web socket connection with the Subscriber
component. Each time a request is made to the blockchain network, the
Publisher sends a message over the web socket connection containing the ID of
the PDC data just published. The subscriber can then query the blockchain
network using that new ID. Thus, allowing a subscriber to receive new records as
soon as they are published to the blockchain network.

3. Statement of Work
3.1. Technology Considerations

HyperLedger Composer, a tool used for building a blockchain network and
implementing smart contracts using HyperLedger Fabric, has recently been
deprecated. To work around this, we looked into an alternative called Convector,
supported by Hyperledger Labs. Convector provides similar functionality that
Composer provides with some additional features such as an API Server
Generator, configuration file generation, Smart Contract boilerplate code, etc.
Also, convector allows the user to make configurations to a Definitions JSON file
for exposing Smart Contract functionality to an API. After further exploration of
HyperLedger Convector, we determined that our use case should be fully
implemented without this technology. By not using Convector, we had more
autonomy in our design and was able to define the network, smart contracts, and
API on our terms.

HyperLedger Fabric was used for configuring and deploying our blockchain
network. HyperLedger Fabric utilizes YAML configuration files for structuring and
setting up the network. HyperLedger Fabric also uses Docker Composer for
defining, creating, and deploying the containerized nodes to ensure all
environment requirements are met. HyperLedger Fabric works using nodes that
exist as the central communication for the network. These nodes ensure
consistency is maintained with the state of the Ledger. HyperLedger Fabric has a

16 sdmay20-12

key value database called CouchDB to deal with transaction logs and ledgers
(NoSQL document store). CouchDB is the default database for HyperLedger
Fabric, therefore the best choice when working with Fabric.

For development of our request API and Publisher there are many technologies
on the market to consider. With that in mind, there are three web frameworks the
team has looked into. Django, written in Python, provides rapid development and
a plethora of tools for development for teams. Flask, also written in Python,
provides a simple and flexible developer experience. Comparing the two, Flask is
most likely preferred if the focus is gaining experience and learning. Django
would be preferred if the focus is on the final product and maintainability, being
the older of the two. The final web framework we have considered is Node.js.
The benefit of Node.js for our team is that we are already doing some
programming in JavaScript through other components of the project. Therefore,
the team has decided to move forward using Node.js for the API and Publisher.

For the web user interface we used ReactJS. The team decided upon this to give
ourselves the opportunity to work with a framework that is growing within the
developer community. Additionally, ReactJS is primarily used for building single
page applications, which fits our expected solution for the web user interface.

3.2. Project Tracking Procedure
The team used a Gantt Chart to track progress. This Gantt chart was updated at
the end of every sprint, and was primarily for the visibility of those outside of the
team. We used the Gantt chart for a high-level view on project tasks,
relationships between tasks, and milestones. We also used Gitlab Issues to
break up tasks on the Gantt chart into smaller tasks. We chose to use Gitlab
Issues due to its ability to produce burndown charts and allows us to use custom
formats for issue tracking. We used these issues to track individual and team
progress throughout the project. These issues include a title, description on what
will be worked on, due dates, labels, and assigned members. When an issue is
completed, it is marked as so and archived, leaving a detailed list of what was
worked on for the project. Looking at the example below, we can see that Gitlab
provides the ability to not only explain what the specific task will implement, but
also displays a record of changes to the issue.

17 sdmay20-12

Figure 7: Gitlab Issues example

3.3. Project Timeline
For the majority of section 3.3, when stating that an implementation of a feature
will be happening, this suggests that the implementation will include the
necessary source code, along with the implementation of any appropriate tests
e.g. unit, integration, smoke.

 Figure 8: Gantt Chart

18 sdmay20-12

Implementing a Blockchain Network took the longest compared to other groups
of tasks due to the team’s inexperience with the technology and gaining access
to the resources for hosting the Blockchain Network.

4. Testing and Implementation
4.1. Process of testing

Figure 9: Process of testing

Figure 9 displays an overview of the process of testing. We followed each flow as
we progressed forward in the development of our project. For each flow, we
implemented the testing in the first block before moving on to the next and so on.
This way we were able to break down our testing into concise parts to know what
needs to be accomplished for our testing.

19 sdmay20-12

4.2. Interface Specifications
All components within the software suite will have to agree on consistent models
to represent performance data, types of devices to interact with, and operator
commands. We base our model off a use case of NASPInet, a standard put forth
by the DOE and NERC to standardize the infrastructure of synchro-phasor
communication networks. We can look at the NASPInet Conceptual Architecture
in Figure 10 and compare it with our blockchain architecture to get a better
concept of the interface.

Figure 10: NASPInet Conceptual Architecture Diagram

20 sdmay20-12

Figure 11: A Conceptual Architecture Diagram For Our Blockchain

The usage of blockchain technology itself represents most of the components
that would be expected in the Phasor Gateway and Data Bus representation on
the NASPInet, things such as authentication and data validation. In our network,
the Publisher represents the PMU or PDC that would send data to the Historian,
or the ledger within each peer in the team’s project. By making Organization 4
and 5 read-only on the network, we can represent a Monitoring Center in the
NASPInet that would not be publishing data to the network.

4.3. Hardware and Software
4.3.1. API

● Unit tests and integration tests for the API use the Jest Javascript
testing framework. With this framework we wrote automated tests
to make HTTP requests to our endpoints and unit test classes and
functions.

4.3.2. Blockchain Network
● All new chaincode was added to a chaincode subdirectory and is

tested when relaunching the Blockchain Network.
● Performance testing was done on the Blockchain Network using a

tool created by the team. The tool follows a publisher subscriber
pattern. The publisher will publish to the blockchain network, after
which it will notify the subscriber that it can now make a query for
the published data. If the query is successful, the subscriber will
record the latency information in a CSV file. The results can then
be analysed to check for performance increases from blockchain

21 sdmay20-12

configuration modifications. For this tool we used the JavaScript
WebSockets library, for open communication between the
publisher and the subscriber.

4.3.3. Smart Contract Layer
● We used the Jest Javascript testing framework for testing smart

contracts.
4.3.4. User Interface

● For writing unit tests, acceptance tests, and end-to-end tests, the
Jest Javascript test runner was used along with the React Testing
Library. The Jest test runner allowed us to access the DOM via
jsdom for testing React components and to use mocks. The React
testing library allowed us to test React components without relying
on their implementation details.

4.4. Functional Testing
4.4.1. Unit Testing

All individual testable tasks had their testing consisting of one or more
tests for each component of the task. Each task that involves configuring
or creating a part of the blockchain, smart contracts, API and UI had
individual unit tests to confirm that the task is fully accomplished and that
component can start to be safely integrated. The creation and integration
tasks for the blockchain were tested to ensure the organizations,
channels, orderers, and MSP are all configured correctly. This was done
by testing the contents of each one individually on the running blockchain
network. Smart Contracts were tested to ensure that the metrics data are
tracked and updated properly throughout all contracts, as well as tested to
make sure that the deployed smart contracts are interacting properly with
the blockchain network. Each one of the API’s endpoints were tested to
ensure that they can be used to query the specified data.

4.4.2. Integration Testing
Integration testing of the blockchain network consisted of deploying the
nodes for the network and testing that the blockchain network is running
and it’s able to accurately execute the smart contracts as well as update
all nodes on the network with a new contract. The integration of the
blockchain with the API was tested by running commands through the API
to query, log in, and create commands/data that were tested against
known data. The integration of the API with the smart contracts was
tested by trying to execute a contract through the API and checking that it
was properly executed. The Integration between the API and UI was

22 sdmay20-12

tested by using the UI to execute commands in the API and comparing
what returns with known data.

4.4.3. System (end-to-end) Testing
The system testing consisted of testing the entire software from
end-to-end. A test was done to ensure that a user can access the UI,
query some data by having the UI use the API to execute said queryon
the blockchain, and then comparing the result with what should’ve been
accomplished.

4.5. Non-functional Testing
4.5.1. API

We used unit tests for query response times appropriate for each
endpoint. For example, the query response time making a GET request to
“/api/metrics/” will be much greater than the query response time for
“/api/metrics/1”. The expected query response time was different for each
endpoint.

4.5.2. Blockchain Network
Testing the blockchain network can be a difficult task since most of what
makes up the network is just configuration files. To do some minor
integration testing with the blockchain network, we used a HyperLedger
Fabric CLI (Command Line Interface) docker image. After the blockchain
has been started and the chaincode has been installed and instantiated,
we used the CLI to make some basic queries to test data in the
chaincode, to ensure that a connection can be established with the
network.
Performance testing was also done on the Blockchain Network, to find the
correct configuration to match our designed latency and throughput.

4.5.3. Smart Contract Layer
We implemented an eslint rule to ensure that there is JSDoc for all
functions and classes.

4.5.4. User Interface
We used automated acceptance tests put in place to simulate loss of
communication between the User Interface and the API, and loss of
communication between the API and Blockchain Network.

Unit tests for making unauthenticated requests via the API and to the Smart
Contract layer were done to ensure that all requests must be authenticated.

23 sdmay20-12

4.6. Results
After research and investigation of the types of devices that would be publishing to our
blockchain network, we found that a reasonable frequency of data being published
would be 60 results per second.

After all components of the project (Blockchain Network, API, UI, and Publishers) were
created, we recognized some serious performance issues. The Blockchain originally was
only able to create transactions at a rate of about 0.4 Transactions Per Second.

To gather data on a solution, we developed a tool using a publisher-subscriber pattern
for performance testing. This tool creates and sends a blockchain transaction, after this
transaction is completed it sends a message to the subscriber that there is new data
available, the subscriber will then query the blockchain network to retrieve that data. This
allows us to test both publishing latency and up-down latency.

After running tests and adjusting blockchain configurations, we were able to increase
blockchain performance from 0.4 Transactions Per Second, to almost 3 Transactions
Per Second. Our discoveries with different configurations can be see below:

Figure 12: Bar Chart Comparing Block Timeout Configurations

Our goal was to get our publishing performance up to 60 results per second and
currently our implementation of the Blockchain Network and the Publishers only allows
for 3 results per second. To meet our goal, modifications were made to the testing tool to

24 sdmay20-12

allow multiple results to be sent in the same transaction, which required modification of
the chaincode as well. Our discoveries with these changes can be seen in the graph
below:

Figure 13: Bar Chart Displaying Publishing Improvements

The Original implementation of the tool for testing performance was able to publish just
under 3 results per second without aggregating the data. After modifying the tool, a test
was run sending 20 results with each transaction, and still performing 3 transactions per
second. The results were much better, and we found that publishing to the database
within the chaincode would be a much better solution than making multiple transaction
requests.

In the final stage of testing, we modified the tool to create three publishing entities, with
each publishing to a different organization. In this test we sent 60 results with each
transaction and only performed 1 transaction per second. We expected running three
different publishing entities to affect performance, but the results above were exactly the
performance we had hoped for. All three organizations were able to keep up with the
publishing rate of 60 results per second, with the only issue being that our virtual
machines ran out of space.

25 sdmay20-12

5. Closing Material
5.1. Conclusion
Reflecting upon our implementation of blockchain in an energy delivery system, we are
now able to answer some of the questions that our client initially had, such as, is
blockchain a viable option in this situation? Our final product shows that blockchain can
handle consensus, and validate that integrity of the information in the blockchain is
maintained. By modeling our system after the NASPInet standard, see ​Figure 10​, and
aiming for a goal of 60 frames per second being published, NASPInet defines that our
latency must be less than 100 milliseconds per frame. The best latency our system could
achieve was approximately 300 milliseconds. To compensate for this unsatisfactory
latency result, the team decided to concatenate frames together. The team was able to
achieve 60 frames concatenated into a single create request, then publish this request
once per second, resulting in a hypothetical 60 frames per second. Although these
results do not perfectly reflect the NASPInet standard, they do meet the goal of
publishing 60 frames per second, with some slight modifications to our expectations. Our
blockchain network still improved upon typical energy delivery systems’ security by using
an authentication system for operations on the network and removed the single points of
failure from the system.

5.2. Resources
CouchDB: ​http://docs.couchdb.org/en/stable/
Express: ​https://expressjs.com/en/4x/api.html
HyperLedger Fabric: ​https://hyperledger-fabric.readthedocs.io/en/release-1.4/
HyperLedger Convector: ​https://docs.covalentx.com/article/71-getting-started
Moesif Orign & CORS Changer :​Chrome Store Link
PowerCyber Labs: ​http://powercybersec.ece.iastate.edu/powercyber/welcome.php
Raft: ​https://raft.github.io/
React.JS: ​https://reactjs.org/docs/getting-started.html
NodeJS WebSockets: ​https://github.com/websockets/ws
NodeJS PCAP Parser: ​https://www.npmjs.com/package/pcap-parser

26 sdmay20-12

http://docs.couchdb.org/en/stable/
https://expressjs.com/en/4x/api.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://docs.covalentx.com/article/71-getting-started
https://chrome.google.com/webstore/detail/moesif-orign-cors-changer/digfbfaphojjndkpccljibejjbppifbc
http://powercybersec.ece.iastate.edu/powercyber/welcome.php
https://raft.github.io/
https://reactjs.org/docs/getting-started.html
https://github.com/websockets/ws
https://www.npmjs.com/package/pcap-parser

6. Appendices
6.1. Operation Manual

Optimally, the project will be deployed through a CI script, there are many
complex issues that could occur without a CI script to ensure conformity in
deploying the project. There is a CI script in the root directory of the project
repository named ​.gitlab-ci.yml​.

6.1.1. Blockchain Manual
● Navigate to bc/network and run the generate_script.sh. (Keep the

results of this)
● HyperLedger Fabric is doing communication between virtual

machines by way of Docker Swarm, here are the steps for starting
and running the swarm.

○ Navigate to bc/swarm
○ Node 1

■ Run start_manager.sh
■ Run hacky_script.sh

○ Nodes 2-5
■ Run `sed -i ‘$ s/$/ --advertise-addr <Node IP

Address> join_command’` (join_command was
created originally by the hacky_script in the
previous step)

■ Run `sh join_command`
■ Run hacky_script.sh
■ Note: You may need to adjust the variables in these

files to fit your machine.
● Start HyperLedger Fabric

○ Nodes 1-5 (represented by X)
■ Navigate to bc/network/start-scripts/org${X-1}
■ Run node-${X}.sh

○ Note: You will need to change the hostname of each of the
node-${X}.sh scripts to the hostname of the machine you
are using for this Organization.

● Install Chaincode
○ Navigate to bc/network
○ Execute command `./scripts/start-cli.sh`
○ Navigate to bc
○ Execute command `./startFabric.sh`
○ To Run Tests on the Chaincode navigate to bc/chaincode,

then either monitoring/javascript or utility/javascript.
■ npm install (install dependencies)

27 sdmay20-12

■ npm run coverage (run tests and check code
coverage)

● NOTE: HyperLedger Fabric Network should not be ran locally
as it was developed with remote use in mind.

6.1.2. API Manual
● Change directory into ​api/
● Install dependencies by running ​npm i
● Running Tests

○ Use ​npm test​ to run all tests. To run a specific test run ​npm
test path/to/test.js​.

● Serving Locally
○ Use ​npm run dev​ to start serving the API locally on port

8080.
● Compiling a Build

○ Use ​npm run build​ to compile a build. The compiled files
will be stored in ​api/dist/​.

● On our virtual machines, the API is containerized and served
using several commands involving Docker. The commands are
located in the gitlab-ci.yml file found in the root directory of the git
repository.

6.1.3. UI Manual
● When in the cloned git repository, change into the ‘ui’ directory.
● In a terminal, run ‘npm i’ to install dependencies.
● To run tests, run ‘npm run test’. Test results will be printed in the

terminal.
● To run a local server, run ‘npm run start’.
● On our virtual machines, the React app is containerized and

served using several commands involving docker. The commands
are located in the gitlab-ci.yml file found in the root directory of the
git repository.

6.1.4. Publisher Manual
● The publisher will be deployed in a state where it will publish

metrics of a specific Organization. To publish metrics to all 3
Organizations concurrently, you will need to do this three times
and modify the Org environment argument in docker run
command, replace ${ORG} in all commands with 0, 1, or 2.

● Execute `mv bc/network/connection-org${ORG}.json
publisher/src/bc/connection-org${ORG}.json`.

● Execute `cd publisher/`.
● Execute `docker build -t publisher .`.
● Execute `docker run --env ORG=${ORG} --net host

--name=publisher_container -d publisher`.

28 sdmay20-12

● You will need to ensure that the docker container named
publisher_container is not running when executing Step 4.

● Run tests against the library with `npm run coverage`.
6.1.5. Publisher-Subscriber Performance Tool Manual

● The PubSub Testing Tool directions are the exact same as the
Publisher deployment directions with some minor adjustments.

● The directories to navigate to are cd pubsub-recorder/subscriber
and pubsub-recorder/publisher for Subscriber and Publisher
respectively.

● Additionally, the subscriber should be deployed with an additional
environment variable argument on the docker run command. This
should be IPADDR=${The Subscriber IP Address}

6.2. Previous Design Versions
6.2.1. The software we wanted to use initially for developing the smart contracts,

HyperLedger Composer, was depreciated.recently causing our team to
explore other options, leading to us using Convector instead.

6.2.2. We realized that Convector wasn’t providing us with the autonomy
necessary for moving forward in our implementation and decided to not
use it as well.

6.2.3. Our initial blockchain was able to only process 0.4 executions per second
after it’s first successful latency test, which was a lot lower than needed.

6.3. Project Code
6.3.1. Our projects code can be found on our team’s git page, found here:

● http://sdmay20-12.sd.ece.iastate.edu

29 sdmay20-12

