

Applying Blockchain to Energy Delivery
Systems

DESIGN DOCUMENT
Team: sdmay20-12

Client: Grant Johnson
Adviser: Manimaran Govindarasu

Team Members:

Anthony Cosimo - Test Engineer
Jacob Dawson - Project Manager
Keegan Bloedel - API Architect

Katherine Ringgenberg - UI Architect
Steven Rein - Blockchain Architect

Dakota Moore - Cybersecurity Manager

sdmay20-12@iastate.edu
https://sdmay20-12.sd.ece.iastate.edu

Revised: 28 October 2019

1 sdmay20-12

Executive Summary

Development Standards & Practices Used
● Agile Software Development - two week sprints
● Test-driven Development
● Continuous Integration and Development
● Peer Reviews

Summary of Requirements
● API

○ API shall expose Smart Contract functions to Web Requests from the User
Interface

○ API requests require authentication
○ API shall still be functional when the Blockchain network is down

● Blockchain Network
○ Blockchain Network shall have a minimum of five nodes
○ Blockchain Network shall have multiple orderer nodes

● Smart Contract Layer
○ Functions within the Smart Contract Layer shall be able to read, update, delete,

and query data stored on the ledger
● User Interface

○ Allow user to display and query performance data stored in Blockchain network
○ Allow user to issue operator commands

● System-level
○ Each system shall be fault tolerant to other systems.

■ For example, if the Blockchain Network is down, the API shall return an
appropriate error code to the UI, indicating that the Blockchain Network is
down. The UI will then display a message notifying the user of the
Blockchain Network being down.

○ Each component shall be deployed on Linux virtual machines made available
through PowerCyber resources.

Applicable Courses from Iowa State University Curriculum
● COM S 309: Software Development Practices
● COM S 319: Construction of User Interfaces
● S E 329: Software Project Management
● S E 339: Software Architecture and Design

2 sdmay20-12

New Skills/Knowledge acquired that was not taught in courses
● Knowledge of HyperLedger Fabric and other HyperLedger technologies
● Knowledge of Blockchains concepts applicable to the problem domain

○ Orderers
○ Self-Signing Certificates
○ Node interactions
○ Raft Consensus

● Understanding and implementation of Docker tooling for containerized applications

3 sdmay20-12

Table of Contents

1 Introduction

1.1 Acknowledgement

1.2 Problem and Project Statement

1.3 Operational Environment

1.4 Functional Requirements

1.5 Non-functional Requirements

1.6 Intended Users and Uses

1.7 Assumptions and Limitations

1.8 Expected End Product and Deliverables

2 Specifications and Analysis

2.1 Proposed Design

2.2 Design Analysis

2.3 Development Process

2.4 Design Plan

3 Statement of Work

3.1 Previous Work And Literature

3.2 Technology Considerations

3.3 Task Decomposition

3.4 Possible Risks And Risk Management

3.5 Project Proposed Milestones and Evaluation Criteria

3.6 Project Tracking Procedures

3.7 Expected Results and Validation

4 Project Timeline, Estimated Resources, and Challenges

4 sdmay20-12

4.1 Project Timeline

4.2 Feasibility Assessment

4.3 Personnel Effort Requirements

4.4 Other Resource Requirements

4.5 Financial Requirements

5 Testing and Implementation

5.1 Interface Specifications

5.2 Hardware and Software

5.3 Functional Testing

5.4 Non-Functional Testing

5.5 Process

5.6 Results

6 Closing Material

6.1 Conclusion

6.2 References

6.3 Appendices

5 sdmay20-12

List of figures/tables/symbols/definitions
Figure 1: Use Case Diagram
Figure 2: Architecture Diagram
Figure 3: Level 0 Diagram
Figure 4: API Level 1 Diagram
Figure 5: Blockchain Level 1: Diagram
Figure 6: UI Level 1: Diagram
Figure 7: Gitlab Issues example
Table 1: Timeline of Proposed Work Schedules
Table 2: Personnel Efforts Requirements per Task

1. Introduction
1.1. Acknowledgement
Our team would like to thank and acknowledge PowerCyber Labs for allowing us to use
their compute resources, Manimaran Govindarasu for advising our project, and Grant
Johnson for being the client to our project.

1.2. Problem and Project Statement
1.2.1. Problem Statement

Energy Delivery Systems are deployed in an environment that is geographically
distributed utilizing public internet infrastructure for communications. The integrity
of measurements, commands, and authenticity of control devices performing
communication are critical for trusted operations.

1.2.2. Proposed Solution
The purpose of this project is to develop a blockchain Energy Delivery System
solution to solve the problem statement. The project is driven by the need
described in the problem statement above, to create a secure network for a
geographically diverse Energy Delivery System. A report on the security of
Energy Delivery Systems from the National Research Council in 2012 stated that
a powerful terrorist organization could cause a blackout for millions of people for
many weeks (Terrorism and the Electric Power Delivery System, 2012). To help
mitigate this risk, the use of blockchain technology would provide a secure
network for managing Energy Delivery Systems by removing the dependency on
a central service. Additionally, a permissioned blockchain system ensures a
higher level of security when concerned with cyber attacks similar to a fifty-one
percent attack. With this project we hope to deploy a permissioned blockchain

6 sdmay20-12

system for interaction between devices on an Energy Delivery System and users
managing those devices.

1.3. Operational Environment
The operating environment for this project is servers that will store the project
and other data we may use, such as simulation data. Therefore, it should not be
subject to any harsh weather conditions, and the servers should be properly
maintained. These servers will be a linux-based and deployed on a network that
will allow for secure permissioned communication between all nodes.

1.4. Functional Requirements
1.4.1. API

1.4.1.1. The API shall expose the Smart Contract functions to Web
Requests from the User Interface and/or Devices.

1.4.1.2. The API calls shall be authenticated to the Blockchain Node
System.

1.4.1.3. Requests to the API shall require authentication.
1.4.1.4. When the Blockchain network is down the API shall return an

appropriate error code indicating the loss of the Blockchain
Network.

1.4.2. Blockchain Network
1.4.2.1. The Blockchain Network shall consist of at least five nodes for

transaction consensus.
1.4.2.2. The Blockchain Network shall consist of multiple nodes to act as

orderers.
1.4.3. Smart Contract Layer

1.4.3.1. The Smart Contracts shall implement the blockchain functions to
read, update, delete, and query data stored on the ledger.

1.4.3.2. Users that are assigned to a channel are the only users allowed to
utilize the Smart Contracts functions made available to that
channel

1.4.3.3. Each Smart Contract shall define more than one endorsing node
for consensus.

1.4.4. User Interface
1.4.4.1. The User Interface shall be rendered in a modern web browser.
1.4.4.2. If a user has the authority to request specific measurements

and/or metrics and does so via the User Interface, then the User
Interface shall display those requested measurements and/or
metrics.

7 sdmay20-12

1.4.4.3. If a user has the authority to issue specific operator commands,
then User Interface shall provide the ability to issue those specific
operator commands to the ledger.

1.4.4.4. Given the API is down the User Interface shall remain functional.
1.4.4.5. A user shall be able to view the results of metrics and

measurements they had previously requested.
1.4.5. Operational Environment

1.4.5.1. The blockchain network shall run on a linux-based virtual machine
provided by PowerCyber resources.

1.4.5.2. The API shall run on a linux-based virtual machine provided by
PowerCyber resources.

1.4.5.3. The User Interface shall run on a linux-based virtual machine
provided by PowerCyber resources.

1.4.5.3.1. The User Interface should be interacted with using a
modern web browser, Chrome will be the supported
browser.

1.5. Non-functional Requirements
1.5.1. API

1.5.1.1. The API shall have swagger documentation for each endpoint.

1.5.1.2. The API shall produce query responses in under x seconds

1.5.1.2.1. Need to look into reasonable value for this.

1.5.1.3. The API shall have continuous integration and automated
deployment.

1.5.2. Blockchain Network

1.5.2.1. Each node on the network shall be ran using Docker containers to
allow for reliability when ran on different types of machines.

1.5.2.2. The Blockchain Network shall be deployed to PowerCyber
resources by implementing a CI/CD pipeline.

1.5.2.3. The Blockchain Network should be able to run in a Linux-based
system via the services provided by Amazon Web Services,
however this is not a direct stipulation by the client, just a potential
for additional complexity if needed.

1.5.3. Smart Contract Layer

1.5.3.1. The Smart Contract Layer shall have automated deployment and
automated testing.

8 sdmay20-12

1.5.3.2. The Smart Contract Layer shall make updates to the Blockchain
Network.

1.5.3.3. The Smart Contract Layer controllers and models shall contain
documentation that describe their purpose and intended use.

1.5.3.4. The Smart Contract Layer shall have unit tests for all controllers.

1.5.4. User Interface

1.5.4.1. If the blockchain network is not available, the User Interface shall
display loss of communication to the user.

1.5.5. Maintainability

1.5.5.1. The documentation made available through the project’s wiki is
descriptive enough for the client to understand how to modify the
project properly when needed.

1.5.5.2. When the client wishes to modify the project, the project shall not
be difficult to modify.

1.5.5.3. Continuous Integration and Continuous Deployment can run all
tests and deploy to the necessary environments as needed by the
client.

1.6. Intended Users and Uses
Our Energy Delivery System will have two main types of users: human users and
devices. The use cases of these users will consist of the following:

1.6.1. Human users should be required to login into the system through a web
user interface before interacting with the system.

1.6.2. Querying metrics and measurements from the blockchain system. This
will be done by the human users.

1.6.3. Posting updated commands for devices to use. This will also be done by
the human users, although there are potential use cases within the
problem domain where the devices will give or share commands with
each other.

1.6.4. Receive and execute commands provided by the user. This will be done
by the devices.

1.6.5. Periodically post updated measurements. This will be done by the
devices, although there is potential for the human users to make changes
to the domain specific data, in cases of errors with metrics or
measurements.

These use cases and users may have overlapping interactions with the system
as mentioned, but generally the interactions will consist of the primary user in
each use case, as mentioned above.

9 sdmay20-12

Figure 1: Use Case Diagram

1.7. Assumptions and Limitations
1.7.1. Assumptions

1.7.1.1. Server hardware and operating system environment will be made
available through PowerCyber and these resources will be
sufficient for the development.

1.7.1.2. We will be provided access to devices that use PowerCyber.
1.7.2. Limitations

1.7.2.1. There is no budget for the project, thus, we are constrained to
using PowerCyber resources.

1.7.2.2. If the PowerCyber resources are found to be insufficient, the
sponsor will either arrange for different resources or modify the
scope to work with the existing resources.

1.7.2.3. Hyperledger Fabric must be used as the permission-based
distributed ledger framework.

1.7.2.4. All Hyperledger Fabric related code must be written in JavaScript.
1.8. Expected End Product and Deliverables

1.8.1. A Fully Functional Blockchain Node System
There will be a Node System that is running within Virtual Machines within
the PowerCyber network. The nodes in the Node System will help to
endorse information updates to the ledger, provide immutability of the
data within the ledger, and be fault tolerant to losses of nodes within the
network. Communication with these nodes will be done by a multi-node
ordering service. Unlike other blockchain systems, the orderer will allow
our data to be deterministic instead of probabilistic. Additionally, the
blockchain Node System will have smart contracts installed and
instantiated, this will be for interaction between the nodes and the API
system which will be utilized by the users for the provided use cases.

10 sdmay20-12

1.8.2. Authenticated Call from API to the Blockchain Node System
There will be an API that can utilize the Smart Contracts in order to
create, read, update, delete, and query data available on the Node
System. All calls to the Smart Contracts from the API shall be
authenticated and verified by the allowed participants in each channel.
The Smart contracts will be able to receive data from the nodes along
with updating the data on the nodes.

1.8.3. Web-based User Interface
The web-based user interface will contain web pages that will allow
authenticated users to query and view measurements, and post
commands to devices.

1.8.4. Project Documentation
There will be a wiki that lives within the project repository that describes
how to deploy updates to the Smart Contracts, Node System, API, and
Web-based User Interface. This wiki will also have documentation
regarding the development environment setup and required
dependencies.

1.8.5. Continuous Integration and Deployment Infrastructure
There will be a CI/CD solution in place for the project. Continuous
Integration will run on all merge requests and will run on the master
branch weekly to ensure that the master branch remains clean.
Continuous deployment will be available for the blockchain network, API,
and web-based user interface.

2. Specifications and Analysis
2.1. Proposed Design

The software solution consists of the following components: a User Interface, an
API, and a Blockchain Network. The API receives requests from the User
Interface to view performance data and issue operator commands to PowerCyber
devices. The API will authenticate those requests with the Membership Service
Provider. After a request has been authenticated, the API will make a request to
run a smart contract on the Blockchain Network that either queries performance
measurements or updates operator commands for the PowerCyber devices.

11 sdmay20-12

Figure 2: Architecture Diagram (above)

Figure 3: Level 0 Diagram (above)

2.1.1. API
2.1.1.1. The API will run smart contracts when new performance data has

been received by a PowerCyber Device.
2.1.1.2. The API will run smart contract when an authenticated user

requests to view performance data.

12 sdmay20-12

Figure 4: API Level 1 Diagram

2.1.2. Blockchain Network
2.1.2.1. The Blockchain Node System will report ledger updates to the

API.
2.1.2.2. The Blockchain Node System will receive requests to run smart

contracts from the API.
2.1.2.3. Given that the entity who has requested to run a Smart Contract is

authorized for that requested data, the Blockchain Node System
will run that Smart Contract in order to update the ledger.

Figure 5: Blockchain Network Level 1 Diagram

13 sdmay20-12

2.1.3. Smart Contract Layer
2.1.3.1. Given that the entity who is requesting to query entries via a Smart

Contract is authorized to do so, the Smart Contract Layer will be
able to query entries in the Blockchain Network.

2.1.3.2. Given that the entity who is requesting to create an entry via a
Smart Contract is authorized to do so, the Smart Contract Layer
will be able to create an entry in the Blockchain Network.

2.1.3.3. Given that the entity who is requesting to create an update to an
entry via a Smart Contract is authorized to do so, the Smart
Contract Layer will be able to create an update to an entry in the
Blockchain Network.

2.1.4. User Interface
2.1.4.1. The User Interface will allow a user, based on their authority, to

request PowerCyber Device metrics.
2.1.4.2. The User Interface will allow a user, based on their authority, to

issue operator commands on PowerCyber device(s).
2.1.4.3. The User Interface will allow a user to login.
2.1.4.4. Given that a user with required permissions to create a new

account, the User Interface shall allow the user to create a new
user.

Figure 6: UI Level 1 Diagram

2.1.5. PowerCyber Devices
2.1.5.1. The PowerCyber Devices will receive and perform operator

commands from the Blockchain Network.
2.1.5.2. The PowerCyber Devices will report performance data to the

Blockchain Network.

2.2. Design Analysis
2.2.1. Infrastructure Analysis

2.2.1.1. Blockchain Network

14 sdmay20-12

Currently, we plan on using our Blockchain Network to handle the
messaging between peers. Due to the importance of security, and
the ability to remotely access data we believe that deploying
Blockchain Network will be the best solution.

2.2.1.2. Smart Contracts
We plan to use HyperLedger Smart Contracts on our Blockchain
nodes to build a permissioned blockchain. Smart contracts allow
you to set Client, orderer, peer, and endorser roles to individual
nodes. This increases the security, of the blockchain. Due to the
added features, and security of smart contracts we believe it will
be the best solution for the Blockchain Network.

2.2.2. Front-end Analysis
2.2.2.1. We decided to go with React.js for our front-end User Interface.

Since React.js works well with our API, and well known, and
powerful front-end development tool. Therefore, we believe
React.js is the best way to go for designing the how the user will
interact with the Blockchain.

2.3. Development Process
Our team will be taking an agile approach to the project. We will be using
two-week sprints with a retro and demo at the end of each sprint as necessary.
For all merge requests, there shall be tests to accompany all new work
introduced into the master branch, therefore, we will be following a Test-Driven
Development process for the project. All merge requests must pass all
component and system-level tests, and be reviewed and approved by at least
one other member on the project.

2.4. Design Plan
After gathering requirements and planning the development of solutions to the
gathered requirements we will develop designs for each solution by utilizing data
flow diagrams (such as Figures 3 - 6) and architecture diagrams (such as Figure
2) where appropriate.

The API will process requests from the UI and make requests to Smart Contracts
using the Hyperledger Fabric Node SDK when necessary. All requests made to
the API, except for requests for signing in, will be authenticated requests. If the
Smart Contract Layer were to become unresponsive, the API will remain
functional outside of the interactions with the Smart Contract Layer.

15 sdmay20-12

The Blockchain Network will consist of at least five nodes and multiple orderers
to share messages between peers. The Blockchain Network will have a Raft
Ordering Service for transaction ordering. The world state ledger will utilize
CouchDB. Hyperledger Fabric cryptographic generation tools will be used to
utilize self-signed certificates instead of an external certificate authority to
authenticate interactions to and within the Blockchain Network. Measurement
data will be stored on the Blockchain Network along with issued operator
commands. The purpose of doing so is to provide and immutable transaction
history of operator commands and reports of measurement data.

The Smart Contract Layer will send ledger updates to the API and to PowerCyber
devices respectively. The updates will include operator commands and
measurement updates reported by PowerCyber Devices. All updates will require
endorsements from at least three nodes, given that there are five total nodes.
The Smart Contract Layer will allow users and PowerCyber devices to invoke,
through the API or directly, Smart Contract functions. These functions will be
written in JavaScript and will provide the ability to read, write, query, and delete
information stored in the Blockchain Network. The Smart Contract functions must
installed on at least one Peer Node and instantiated on at least three other nodes
for endorsement.

The UI will allow users to login, request metrics they are authorized to query, and
issue operator commands that they are authorized to issue. If the API were to
shutdown for any reason the UI will remain responsive outside of the interactions
with the API.

3. Statement of Work
3.1. Previous Work and Literature

An article titled “Blockchain technology in the energy sector: A systematic review
of challenges and opportunities” gives a lot of information on blockchains and
how they can be used in energy solutions. One example this article gives is
Brooklyn MicroGrid, which is a blockchain-based person-to-person energy
trading platform.

The Brooklyn MicroGrid system completed a three month trial with the
community. The article was written in February 2019. Upon further research into
Brooklyn MicroGrid, it appears they are still up and running and have future goals
of expanding and having fully automated transactions. This energy trading
platform allows consumers to “sell their energy surplus directly to the neighbors
by use of Ethereum-based smart contracts” (Andoni et al). This system’s ledger
records “contact terms, transacting parties, volumes of energy injected and
consumed by metering devices and crucially the chronological order of

16 sdmay20-12

transactions” (Andoni et al). The article goes more in depth about blockchain
potential and specifics involving the energy sector.

Our project will be looking at securing the communication network in an Energy
Delivery System through the usage of blockchain. This differs from the Brooklyn
MicroGrid system because our system will be constrained by a necessity for high
quality integrity within the data, whereas the Brooklyn MicroGrid system is
concerned with the sale of an energy surplus.

3.2. Technology Considerations
HyperLedger Composer, a tool used for building a blockchain network and
implementing smart contracts using HyperLedger Fabric, has recently been
deprecated. To work around this, we looked into an alternative called Convector,
supported by Hyperledger Labs. Convector provides similar functionality that
Composer provides with some additional features such as an API Server
Generator, configuration file generation, Smart Contract boilerplate code, etc.
Also, convector allows the user to make configurations to a definitions JSON file
for exposing Smart Contract functionality to an API. After further exploration of
HyperLedger Convector, we determined that our use case should be fully
implemented without this technology. By not using Convector, we will have more
autonomy in our design and will be enabled to define the network, smart
contracts, and API on our terms.

HyperLedger Fabric will be used for configuring and deploying our blockchain
network. HyperLedger Fabric utilizes YAML configuration files for structuring and
setting up the network. HyperLedger Fabric also uses Docker Composer for
defining, creating, and deploying the containerized nodes to ensure all
environment requirements are met. HyperLedger Fabric works using orderer
nodes that exist as the central communication for the network. These nodes
ensure consistency is maintained with the state of the Ledger. HyperLedger
Fabric has a key value database called CouchDB to deal with transaction logs
and ledgers (NoSQL document store). CouchDB is the default database for
HyperLedger Fabric, therefore the best choice when working with Fabric.

For development of our user interface and request API there are many
technologies on the market to consider. With that in mind, there are three web
frameworks the team has looked into. Django, written in Python, provides rapid
development and a plethora of tools for development for teams. Flask, also
written in Python, provides a simple and flexible developer experience.
Comparing the two, Flask is most likely preferred if the focus is gaining
experience and learning. Django would be preferred if the focus is on the final
product and maintainability, being the older of the two. The final web framework

17 sdmay20-12

we have considered is Node.js. The benefit of Node.js for our team is that we are
already doing some programming in JavaScript through other components of the
project. Therefore, the team has decided to move forward using Node.js for the
API.

For the web user interface ReactJS will be used. The team decided upon this to
give ourselves the opportunity to work with a framework that is growing within the
developer community. Additionally, ReactJS is primarily used for building single
page applications, which fits our expected solution for the web user interface.

3.3. Task Decomposition
When stating that an implementation of a feature will be happening, this suggests
that the implementation will include the necessary source code, along with the
implementation of any appropriate tests e.g. unit, integration, smoke.

3.3.1. Requirements Gathering

3.3.1.1. Gather Functional Requirements

3.3.1.2. Gather Non-functional Requirements

3.3.2. Gain Domain Knowledge

3.3.2.1. Meet with PowerCyber research team

3.3.2.2. Research Energy Delivery Systems

3.3.3. Implement a functional Blockchain Network

3.3.3.1. Configure Organizations

3.3.3.2. Configure Channels

3.3.3.3. Configure Orderers

3.3.3.4. Configure MSP

3.3.3.5. First Deployment

3.3.3.6. Deployment of Multiple Nodes

3.3.3.7. Deployment of Five Nodes Concurrently

3.3.4. Implement the Smart Contract Layer

3.3.4.1. CRUD Metrics Data

3.3.4.2. CRUD Operator Commands

18 sdmay20-12

3.3.4.3. First Deployment

3.3.5. Implement the API

3.3.5.1. Implement endpoints for logging into software suite

3.3.5.2. Implement endpoints for querying measurement and metrics data

3.3.5.3. Implement endpoints for querying operator commands history

3.3.5.4. Implement endpoints for creating operator commands

3.3.5.5. Integrate with Smart Contract Layer

3.3.6. Implement the UI

3.3.6.1. Implement routes for querying measurement and metrics

3.3.6.2. Implement routes for issuing operator commands to specific
devices

3.3.6.3. Implement routes for querying operator commands on specific
devices

3.3.6.4. Implement routes for account management

3.3.7. Integrate with PowerCyber Devices

3.3.7.1. Implement PowerCyber devices reporting performance data to
Blockchain Network

3.3.7.2. Implement PowerCyber devices receiving operator commands
from Blockchain Network

3.3.8. System-level Testing

3.3.8.1. Implement end-to-end tests for measurements and metrics

3.3.8.2. Implement end-to-end tests for Operator Commands

3.3.8.3. Implement end-to-end tests for Authentications

3.4. Possible Risks and Risk Management
Title: Blockchain could possibly be the wrong solution for the problem we intend
to solve.

Risk: Avoid

19 sdmay20-12

Information: The time to complete blockchain consensus may take too long for
the desired use cases. Also, the resources required to deploy and maintain a
blockchain may not be valuable enough for the desired use cases.

Mitigation Action: We will work with the PowerCyber team to determine
appropriate use cases (measurements and commands) that would benefit from
using a Blockchain Network.

Title: Team’s lack of knowledge on the domain could lead to easy to detect flaws
being introduced into the project.

Risk: Mitigate

Information: The architecture of the project could be at risk due to the lack of
knowledge on the domain. Classes, data-flow, and test assertions could be
invalid resulting in a time consuming refactor.

Mitigation Action: Gain domain knowledge by visiting PowerCyber, interviewing
domain experts, and asking questions to the client and advisor when necessary.
Due to the team’s frequent two week sprints and and high client interaction,
increased communication and quick feedback can be easily achieved.

Title: Integration of system components could fail

Risk: Mitigate

Information: The integration between the Smart Contract Layer and the API, the
PowerCyber Devices and the Blockchain Network, etc. is at risk due to the
team’s inexperience with Smart Contracts and PowerCyber Devices.

Mitigation Action: Utilize and maintain Swagger documentation and automate
integration and acceptance tests.

3.5. Project Proposed Milestones and Evaluation Criteria
● Successful communication between five nodes in the blockchain network

occurs.
○ Occurs when five nodes can successfully communicate.

● Smart contracts within nodes can carry out a task.
○ Occurs when the task that the smart contract intended to carry out

happens successfully.
● Successful communication between blockchain nodes in regards to

problem domain.

20 sdmay20-12

○ Occurs when blockchain nodes are successfully communicating
using definitions of the data within the problem domain.

● API provides reasonable responses queried by the user.
○ Occurs when the API functionality exists for all defined smart

contracts and responses are given successfully in a reasonable
time interval.

● User interface makes a successful API call.
○ Occurs when the API call is triggered by the user interface

successfully carries out its function.
● User interface provides accurate and visually pleasing data.

○ Occurs when the client is satisfied with the readability of displayed
metrics and the user interface, overall.

3.6. Project Tracking Procedure
We are going to use Gitlab Issues to track our progress. Gitlab Issues provides
our team burndown charts and allows us to use custom formats for tracking. We
will use these issues to track individual and team progress throughout the project.
These issues include a title and description on what will be worked on, the ability
to select due dates and labels, and the ability to even assign members to each
issue. When an issue is completed, it is easily marked as so and archived,
leaving a detailed list of what was worked on for the project. Looking at the
example below, we can see that Gitlab provides the ability to not only explain
what the specific task will implement, but also displays a record of changes to the
users.

Figure 7: Gitlab Issues example

Additionally, the team will use a Gantt Chart to track progress that can then be
shared with stakeholders. Tracking through this Gantt chart will be updated at the
end of every sprint, and will primarily be for the visibility of those outside of the
team.

21 sdmay20-12

3.7. Expected Results and Validation
Our desired outcome is to produce and implement a suite of software that utilizes
a secure Blockchain Network and can integrate with devices used at
PowerCyber. This software suite shall add integrity to the existing system at
PowerCyber.

To confirm that our solution works at a higher level the following will need to be
found true by the end of the project.

● The software suite can receive performance data from PowerCyber

devices
● The software suite can store performance data in it’s Blockchain Network
● Users of the software suite can query performance data from the software

suite’s UI
● Users of the software suite can issue operator commands to PowerCyber

devices from the software suite’s UI
● Operator commands issued through the software suite’s UI will be

entered into the Blockchain Network and distributed to the PowerCyber
devices

● PowerCyber devices can receive and execute commands issued to them
via the Blockchain Network

● Removing Blockchain peer nodes does not interrupt validation and
committing to the ledger

● Removing Blockchain orderer nodes does not interrupt validation and
committing to the ledger

● Removing communications to the Blockchain Network or the API results
in a displayed error and continued responsiveness of the UI

4. Project Timeline, Estimated Resources, and Challenges
4.1. Project Timeline

For the majority of section 4, when stating that an implementation of a feature will
be happening, this suggests that the implementation will include the necessary
source code, along with the implementation of any appropriate tests e.g. unit,
integration, smoke.

22 sdmay20-12

Implementing a Blockchain Network will take the longest compared to other
groups of tasks due to the team’s inexperience with the technology and gaining
access to the resources for hosting the Blockchain Network. So far, from what we
have noticed during our experiments with Hyperledger Fabric, implementing the
Smart Contract Layer should not be too difficult.

Implementing the UI shall be close to straight-forward. Some members of the
team have previous experience using React.js and feel comfortable implementing
necessary features.

The time to complete integration with PowerCyber devices is currently unknown.
The estimation in the Gantt chart is our best guess as of right now. We will have

23 sdmay20-12

a more accurate estimation for this task once we have visited with the
PowerCyber team.

4.2. Feasibility Assessment
Depending on the use cases we learn about when we visit with the PowerCyber
team, the correct use case will be chosen that is best suited for a Blockchain
implementation given the latency and data criticality constraints. Some foreseen
challenges that we see as of now is the time for the nodes to come to a
consensus when a Smart Contract is executed. Depending on the requirements
of the devices at PowerCyber, the time to come to a consensus may be too slow.
For example, a device may need to update the Blockchain Network every two
seconds, we can foresee our nodes taking longer than two seconds to come to a
consensus. Thus, rendering our software suite incorrect for that use case.

If there are some use cases that we can handle due to the bottleneck of coming
to a consensus across all nodes, then our project will obsolete provide a simple
and easy way for researchers to view measurements and metrics and to issue
operator commands to PowerCyber devices. While doing so, our software suite
will be providing immutable performance data and operator commands
transaction history.

4.3. Personnel Effort Requirements

Tasks and Milestones Estimated Time
to Complete

3.3.1. Requirements Gathering 10 Days

 3.3.1.1. Gather Functional Requirements 5 Days

 3.3.1.2. Gather Non-functional Requirements 5 Days

3.3.2. Domain Knowledge 16 Days

 3.3.2.1. Meet with PowerCyber research team 8 Days

 3.3.2.2. Research Energy Delivery Systems 8 Days

3.3.3. Creation/Deployment of the Blockchain Network 60 Days

 3.3.3.1. Configure Organizations 7 Days

 3.3.3.2. Configure Channels 7 Days

24 sdmay20-12

 3.3.3.3. Configure Orderers 7 Days

 3.3.3.4. Configure MSP 7 Days

 3.3.3.5. First Deployment 15 Days

 3.3.3.6. Deployment of Multiple Nodes 22 Days

 3.3.3.7. Deployment of Five Nodes Concurrently 60 Days

3.3.4. Creation/Implementation of the Smart Contract Layer 42 Days

 3.3.4.1. CRUD Metrics Data 14 Days

 3.3.4.2. CRUD Operator Commands 14 Days

 3.3.4.3. First Deployment 14 Days

3.3.5. Creation/Deployment/Implementation of the API 80 Hours

 3.3.5.1. Implement endpoints for logging into software suite 14 Days

 3.3.5.3. Implement endpoints for querying measurement and metrics data 7 Days

 3.3.5.3. Implement endpoints for querying operator commands history 14 Days

 3.3.5.4. Implement endpoints for creating operator commands 21 Days

 3.3.5.5. Integrate with Smart Contract Layer 14 Days

3.3.6. Creation/Deployment/Implementation of the UI 61 Days

 3.3.6.1. Implement routes for querying measurement and metrics 21 Days

 3.3.6.2. Implement routes for querying operator commands on specific devices 8 Days

 3.3.6.3. Implement routes for issuing operator commands to specific devices 18 Days

 3.3.6.4. Implement account management 14 Days

3.3.7. Integration with PowerCyber Devices 30 Days

 3.3.7.1. Device to Blockchain Network 15 Days

 3.3.7.2. Blockchain Network to Device 15 Days

3.3.8. System-level Tests 42 Days

 Implement end-to-end tests for measurements and metrics 14 Days

 Implement end-to-end tests for Operator Commands 14 Days

 Implement end-to-end tests for Authentications 14 Days

Total Estimated Time to Complete the Project: 341 Days

25 sdmay20-12

4.4. Other Resource Requirements
For our project, a resource we will need access to is the ISU ECpE PowerCyber
facilities. We will additionally be using Virtual Machines (VMs) as an additional
resource that is required to be able to test our blockchain network before we
implement it with PowerCyber facilities.

5. Testing and Implementation
5.1. Interface Specifications

All components within the software suite will have to agree on consistent models
to represent performance data, types of devices to interact with, and operator
commands. This is yet to be determined until we visit the PowerCyber team.

5.2. Hardware and Software
5.2.1. API

5.2.1.1. Unit tests and integration tests for the API will use the Jest
Javascript testing framework. With this framework we will write
automated tests to make HTTP requests to our endpoints and unit
test classes and functions.

5.2.2. Blockchain Network
5.2.2.1. All new chaincode will be added to a chaincode subdirectory and

will be tested when relaunching the Blockchain Network.
5.2.3. Smart Contract Layer

5.2.3.1. We will be using the Jest Javascript testing framework for testing
smart contracts.

5.2.4. User Interface
5.2.4.1. For writing unit tests, acceptance tests, and end-to-end tests, the

Jest Javascript test runner will be used along with the React
Testing Library. The Jest test runner will allow us to access the
DOM via jsdom for testing React components and to use mocks.
The React testing library will allow us to test React components
without relying on their implementation details. For end-to-end
tests we will remove the use of mocks and have all requests made
to their respective endpoints.

5.2.5. PowerCyber Devices
5.2.5.1. Assuming we will not have access to PowerCyber devices often,

we will have to examine some example performance data from the
devices we will be working with and create a simulation data

26 sdmay20-12

collection to use for integration tests between the Blockchain
Network and PowerCyber devices.

5.3. Functional Testing
5.3.1. Unit Testing

All individual testable tasks will have their testing consisting of one or
more tests for each component of the task. Each task that involves
configuring or creating a part of the blockchain, smart contracts, API and
UI will go through individual unit tests once they are complete as to
confirm that the task is fully accomplished and that component can start
to be safely integrated. The creation and integration tasks for the
blockchain are tested to ensure the organizations, channels, orderers and
MSP are all configured correctly. This will be done by testing the contents
of each one individually on the running blockchain network. Smart
Contracts will be tested to ensure that the metrics data and the operator
commands are tracked and updated properly throughout all contracts, as
well as testing to make sure that the deployed smart contracts are
interacting properly with the blockchain network. Each one of the API’s
endpoints will be tested to ensure that you can use it to query or create
the specified data, and the integration with smart contracts will be tested
by configuring a smart contract through the API and checking it’s
contents. The UI will have unit tests to ensure that you’re able to navigate
to and use each component of it.

5.3.2. Integration Testing
Integration testing of the blockchain network will consist of deploying the
nodes for the network and testing that the blockchain network is running
and it’s able to accurately execute the smart contracts as well as update
all nodes on the network with a new contract. The integration of the
blockchain with the API will be tested by running commands through the
API to query, log in, and create commands/data that will be tested against
known data. The integration of the API with the smart contracts will be
tested by trying to execute a contract through the API and checking that it
was properly executed. The Integration between the API and UI will be
tested by using the UI to execute commands in the API and comparing
what returns with known data. The integration with PowerCyber devices
will be tested to make sure that the device is able to connect to the
blockchain to be queried or report data, as well as tests to ensure it’s
accurately and securely reporting the information by attempting to
intercept and/or alter the data between the device and the network.

5.3.3. System (end-to-end) Testing
The system testing will consist of testing the entire software from
end-to-end. A test will be done to ensure that a user can access the UI,
query some data and/or execute some command by having the UI use

27 sdmay20-12

the API to execute said query/command on the blockchain, and then
comparing the result with what should’ve been accomplished. A test will
also be done to ensure that a device on PowerCyber will be able to
connect to the blockchain network and continuously update data on it by
using the API to constantly update the data stored on the nodes. A last
test will be done to ensure that an unauthorized user isn’t able to access
the UI and ensuring no one is able to intercept and understand data being
transferred into and out of the network.

5.4. Non-functional Testing
Unit tests for making unauthenticated requests via the API and to the Smart
Contract layer will be in place to ensure that all requests must be authenticated.
There will be performance tests for the Smart Contract Layer by using simulated
data from the PowerCyber devices to profile the time it takes for all nodes to
come to a consensus on Smart Contract execution.

5.5. Process
For testing, we will begin with writing unit tests for each individual component
(API, Smart Contracts, Blockchain Network, User Interface). These tests will
ensure that the components themselves work on their own. After the unit tests,
we will then start to integrate our components together. With this, we will then
write integration tests, specifically for the API and User Interface. Along with
integration tests, we will have to write performance testing for our Smart
Contracts layer of our project. For our user interface, we will also need to have
end-to-end testing to ensure that everything involved in the user experience
works. Throughout our project, as new features are added, we will have to have
full regression testing. To help do this, we will implement CI/CD in order to help
with regression testing. If an error were to come back during regression testing,
we will have to go back and either fix a bug in our program or rewrite our tests to
ensure that they all pass.

5.6. Results
During our research phase, we learned that one of the software’s we wanted to use for
our project became depreciated and this led to us having to research further into
possible replacements. This led to us using Convector, which we learned is supported by
Hyperledger Labs. Again, after further research into Convector, we learned that it did not
provide the flexibility when defining our blockchain network that would be necessary for
the project.

28 sdmay20-12

6. Closing Material
6.1. Conclusion
So far we have gathered the requirements from the client and have created a simple
blockchain. We also have VM now provided by PowerCyber to setup a more advanced
blockchain, as well as have a single environment for everyone to work on. Our plan is to
use the PowerCyber VMs to create our network, and to use either proved dummy data or
data provided by PowerCyber to test our blockchain.

6.2. References
M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. Mccallum, and A.
Peacock, “Blockchain technology in the energy sector: A systematic review of challenges
and opportunities,” Renewable and Sustainable Energy Reviews, vol. 100, pp. 143–174,
Feb. 2019.

Terrorism and the Electric Power Delivery System. (2012). National Academies Press,
p.1.

6.3. Appendices
CouchDB:

http://docs.couchdb.org/en/stable/

HyperLedger Fabric:

https://hyperledger-fabric.readthedocs.io/en/release-1.4/

HyperLedger Convector:

https://docs.covalentx.com/article/71-getting-started

PowerCyber Labs:

http://powercybersec.ece.iastate.edu/powercyber/welcome.php

React.JS:

https://reactjs.org/docs/getting-started.html

Raft:

https://raft.github.io/raft.pdf

Moesif Orign & CORS Changer:

29 sdmay20-12

http://docs.couchdb.org/en/stable/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://docs.covalentx.com/article/71-getting-started
http://powercybersec.ece.iastate.edu/powercyber/welcome.php
https://reactjs.org/docs/getting-started.html
https://raft.github.io/raft.pdf

https://chrome.google.com/webstore/detail/moesif-orign-cors-changer/digfbfaphojjndkpcc
ljibejjbppifbc

30 sdmay20-12

https://chrome.google.com/webstore/detail/moesif-orign-cors-changer/digfbfaphojjndkpccljibejjbppifbc
https://chrome.google.com/webstore/detail/moesif-orign-cors-changer/digfbfaphojjndkpccljibejjbppifbc

