

Team: sdmay20-12

Client: Grant Johnson

Adviser: Manimaran Govindarasu

Team Members:

Anthony Cosimo - Test Engineer

Jacob Dawson - Report Manager

Keegan Bloedel - Meeting Facilitator

Katherine Ringgenberg - Meeting Scribe

Steven Rein - Software Architect

Dakota Moore - Cybersecurity Manager

sdmay20-12@iastate.edu

https://sdmay20-12.sd.ece.iastate.edu

Revised: 3 October 2019

Applying Blockchain to Energy
Delivery Systems

DESIGN DOCUMENT

SDMAY20-12 1

Development Standards & Practices Used

● Agile Software Development - two-week sprints
● Test-driven Development
● Continuous Integration and Development
● Peer Reviews

Summary of Requirements

1. API
1.1. API shall expose Smart Contract functions to Web Requests from the

User Interface
1.2. API requests require authentication
1.3. API shall still be functional when the Blockchain network is down

2. Blockchain Network
2.1. Blockchain Network shall have a minimum of five nodes
2.2. Blockchain Network shall have multiple orderer nodes

3. Smart Contract Layer
3.1. Functions within the Smart Contract Layer shall be able to read,

update, delete, and query data stored on the ledger
4. User Interface

4.1. Allow user to display and query performance data stored in
Blockchain network

4.2. Allow user to issue operator commands
5. System-level

5.1. Each system shall be fault tolerant to other systems.
5.1.1. For example, if the Blockchain Network is down, the API shall

return an appropriate error code to the UI, indicating that the
Blockchain Network is down. The UI will then display a
message notifying the user of the Blockchain Network being
down

5.2. Each component shall be deployed on Linux virtual machines made
available through PowerCyber resources

Executive Summary

SDMAY20-12 2

Applicable Courses from Iowa State University Curriculum

● COM S 309: Software Development Practices
● COM S 319: Construction of User Interfaces
● S E 329: Software Project Management
● S E 339: Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses

● Knowledge of HyperLedger Fabric and other HyperLedger technologies
● Knowledge of Blockchains concepts applicable to the problem domain

○ Orderers
○ Self-Signing Certificates
○ Node interactions
○ Raft Consensus

● Understanding and implementation of Docker tooling for containerized
applications

SDMAY20-12 3

Table of Contents

1 Introduction 5

1.1 Acknowledgment 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Functional Requirements 6

1.5 Non-functional Requirement 7

1.6 Intended Users and Uses 8

1.7 Assumptions and Limitations 8

1.8 Expected End Product and Deliverables 9

2. Specifications and Analysis 9

2.1 Proposed Design 9

2.2 Design Analysis 11

2.3 Development Process 11

2.4 Design Plan 11

3. Statement of Work 12

3.1 Previous Work And Literature 12

3.2 Technology Considerations 13

3.3 Task Decomposition 13

3.4 Possible Risks And Risk Management 15

3.5 Project Proposed Milestones and Evaluation Criteria 15

3.6 Project Tracking Procedures 16

3.7 Expected Results and Validation 16

4. Project Timeline, Estimated Resources, and Challenges 17

4.1 Project Timeline 17

4.2 Feasibility Assessment 18

4.3 Personnel Effort Requirements 18

4.4 Other Resource Requirements 20

5. Testing and Implementation 20

5.1 Interface Specifications 20

5.2 Hardware and software 20

5.3 Functional Testing 21

SDMAY20-12 4

5.4 Non-Functional Testing 21

5.5 Results 21

6. Closing Material 21

6.1 Conclusion 21

6.2 References 21

6.3 Appendices 22

SDMAY20-12 5

List of Figures/Tables/Symbols/Definitions

Figure 1: Use Case Diagram

Figure 2: Architecture Diagram

Table 1: Timeline of Proposed Work Schedules

Table 2: Personnel Efforts Requirements per Task

1 Introduction

1.1 ACKNOWLEDGMENT

Our team would like to thank and acknowledge PowerCyber Labs for allowing us to use their
compute resources, Manimaran Govindarasu for advising our project, and Grant Johnson for being
the client to our project.

1.2 PROBLEM AND PROJECT STATEMENT

1.2.1 Problem Statement

Energy Delivery Systems are deployed in an environment that is geographically distributed utilizing
public internet infrastructure for communications. The integrity of measurements, commands, and
authenticity of control devices performing communication are critical for trusted operations.

1.2.2 Proposed Solution

The purpose of this project is to develop a blockchain Energy Delivery System solution to solve the
problem statement. The project is driven by the need described in the problem statement above, to
create a secure network for a geographically diverse Energy Delivery System. A report on the
security of Energy Delivery Systems from the National Research Council in 2012 stated that a
powerful terrorist organization could cause a blackout for millions of people for many weeks
(Terrorism and the Electric Power Delivery System, 2012). To help mitigate this risk, the use of
blockchain technology would provide a secure network for managing Energy Delivery Systems by
removing the dependency on a central service. Additionally, a permissioned blockchain system
ensures a higher level of security when concerned with cyber-attacks like a fifty-one percent attack.
With this project we hope to deploy a permissioned blockchain system for interaction between
devices on an Energy Delivery System and users managing those devices.

1.3 OPERATIONAL ENVIRONMENT

The operating environment for this project is servers that will store the project and other data we
may use, such as simulation data. Therefore, it should not be subject to any harsh weather
conditions, and the servers should be properly maintained. These servers will be a Linux-based and
deployed on a network that will allow for secure permissioned communication between all nodes.

SDMAY20-12 6

1.4 FUNCTIONAL REQUIREMENTS

1.4.1 API

1.4.1.1 The API shall expose the Smart Contract functions to Web Requests from the User
Interface and/or Devices.

1.4.1.2 The API calls shall be authenticated to the Blockchain Node System.

1.4.1.3 Requests to the API shall require authentication.

1.4.1.4 When the Blockchain network is down the API shall return an appropriate error code
indicating the loss of the Blockchain Network.

1.4.2 Blockchain Network

1.4.2.1 The Blockchain Network shall consist of at least five nodes for transaction consensus.

1.4.2.2 The Blockchain Network shall consist of multiple nodes to act as orderers.

1.4.3 Smart Contract Layer

1.4.3.1 The Smart Contracts shall implement the blockchain functions to read, update, delete, and
query data stored on the ledger.

1.4.3.2 Users that are assigned to a channel are the only users allowed to utilize the Smart
Contracts functions made available to that channel

1.4.3.3 Each Smart Contract shall define more than one endorsing node for consensus.

1.4.4 User Interface

1.4.4.1 The User Interface shall be rendered in a modern web browser.

1.4.4.2 If a user has the authority to request specific measurements and/or metrics and does so via
the User Interface, then the User Interface shall display those requested measurements
and/or metrics.

1.4.4.3 If a user has the authority to issue specific operator commands, then User Interface shall
provide the ability to issue those specific operator commands to the ledger.

1.4.4.4 Given the API is down the User Interface shall remain functional.

1.4.4.5 A user shall be able to view the results of metrics and measurements they had previously
requested.

1.4.5 Operational Environment

1.4.5.1 The blockchain network shall run on a Linux-based virtual machine provided by
PowerCyber resources.

1.4.5.2 The API shall run on a Linux-based virtual machine provided by PowerCyber resources.

SDMAY20-12 7

1.4.5.3 The User Interface shall run on a Linux-based virtual machine provided by PowerCyber
resources.

1.4.5.3.1 The User Interface should be interacted with using a modern web browser, Chrome
will be the supported browser.

1.5 NON-FUNCTIONAL REQUIREMENT

1.5.1 API

1.5.1.1 The API shall have swagger documentation for each endpoint.

1.5.1.2 The API shall produce query responses in under x seconds

1.5.1.2.1 Need to investigate reasonable value for this.

1.5.1.3 The API shall have continuous integration and automated deployment.

1.5.2 Blockchain Network

1.5.2.1 Each node on the network shall be ran using Docker containers to allow for reliability
when ran on different types of machines.

1.5.2.2 The Blockchain Network shall be deployed to PowerCyber resources by implementing a
CI/CD pipeline.

1.5.2.3 The Blockchain Network should be able to run in a Linux-based system via the services
provided by Amazon Web Services, however this is not a direct stipulation by the client,
just a potential for additional complexity if needed.

1.5.3 Smart Contract Layer

1.5.3.1 The Smart Contract Layer shall have automated deployment and automated testing.

1.5.3.2 The Smart Contract Layer shall make updates to the Blockchain Network.

1.5.3.3 The Smart Contract Layer controllers and models shall contain documentation that
describe their purpose and intended use.

1.5.3.4 The Smart Contract Layer shall have unit tests for all controllers.

1.5.4 User Interface

1.5.4.1 If the blockchain network is not available, the User Interface shall display loss of
communication to the user.

1.5.5 Maintainability

1.5.5.1 The documentation made available through the project’s wiki is descriptive enough for the
client to understand how to modify the project properly when needed.

SDMAY20-12 8

1.6 INTENDED USERS AND USES

Our Energy Delivery System will have two main types of users: human users and devices. The
use cases of these users will consist of the following:

1.6.1 Human users should be required to login into the system through a web user interface
before interacting with the system.

1.6.2 Querying metrics and measurements from the blockchain system. This will be done by the
human users.

1.6.3 Posting updated commands for devices to use. This will also be done by the human users,
although there are potential use cases within the problem domain where the devices will
give or share commands with each other.

1.6.4 Receive and execute commands provided by the user. This will be done by the devices.
1.6.5 Periodically post updated measurements. This will be done by the devices, although there

is potential for the human users to make changes to the domain specific data, in cases of
errors with metrics or measurements.

These use cases and users may have overlapping interactions with the system as mentioned, but
generally the interactions will consist of the primary user in each use case, as mentioned above.

 Figure 1: Use Case Diagram

1.7 ASSUMPTIONS AND LIMITATIONS

1.7.1 Assumptions

1.7.1.1 Server hardware and operating system environment will be made available through
PowerCyber and these resources will be sufficient for the development.

1.7.1.2 We will be provided access to devices that use PowerCyber.

1.7.2 Limitations

1.7.2.1 There is no budget for the project, thus, we are constrained to using PowerCyber resources.

1.7.2.2 If the PowerCyber resources are found to be insufficient, the sponsor will either arrange for
different resources or modify the scope to work with the existing resources.

1.7.2.3 Hyperledger Fabric must be used as the permission-based distributed ledger framework.

SDMAY20-12 9

1.7.2.4 All Hyperledger Fabric related code must be written in JavaScript.

1.8 EXPECTED END PRODUCT AND DELIVERABLES

1.8.1 A Fully Functional Blockchain Node System

There will be a Node System that is running within Virtual Machines within the PowerCyber
network. The nodes in the Node System will help to endorse information updates to the ledger,
provide immutability of the data within the ledger, and be fault tolerant to losses of nodes within
the network. Communication with these nodes will be done by a multi-node ordering service.
Unlike other blockchain systems, the orderer will allow our data to be deterministic instead of
probabilistic. Additionally, the blockchain Node System will have smart contracts installed and
instantiated, this will be for interaction between the nodes and the API system which will be
utilized by the users for the provided use cases.

1.8.2 Authenticated Calls from API to the Blockchain Node System

There will be an API that can utilize the Smart Contracts in order to create, read, update, delete,
and query data available on the Node System. All calls to the Smart Contracts from the API shall be
authenticated and verified by the allowed participants in each channel. The Smart contracts will be
able to receive data from the nodes along with updating the data on the nodes.

1.8.3 Web-based User Interface

The web-based user interface will contain web pages that will allow authenticated users to query
and view measurements, and post commands to devices.

1.8.4 Project Documentation

There will be a wiki that lives within the project repository that describes how to deploy updates to
the Smart Contracts, Node System, API, and Web-based User Interface. This wiki will also have
documentation regarding the development environment setup and required dependencies.

1.8.5 Continuous Integration and Deployment Infrastructure

There will be a CI/CD solution in place for the project. Continuous Integration will run on all
merge requests and will run on the master branch weekly to ensure that the master branch remains
clean. Continuous deployment will be available for the blockchain network, API, and web-based
user interface.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

The software solution consists of the following components: a User Interface, an API, and a
Blockchain Network. The API receives requests from the User Interface to view performance data
and issue operator commands to PowerCyber devices. The API will authenticate those requests
with the Membership Service Provider. After a request has been authenticated, the API will make a

SDMAY20-12 10

request to run a smart contract on the Blockchain Network that either queries performance
measurements or updates operator commands for the PowerCyber devices.

 Figure 1: Architecture Diagram

2.1.1 API

2.1.1.1 The API will run smart contracts when new performance data has been received by a
PowerCyber Device.

2.1.1.2 The API will run smart contract when an authenticated user requests to view performance
data.

2.1.2 Blockchain Network

2.1.2.1 The Blockchain Node System will report ledger updates to the API.

2.1.2.2 The Blockchain Node System will receive requests to run smart contracts from the API.

2.1.2.3 Given that the entity who has requested to run a Smart Contract is authorized for that
requested data, the Blockchain Node System will run that Smart Contract in order to
update the ledger.

2.1.3 Smart Contract Layer

2.1.3.1 Given that the entity who is requesting to query entries via a Smart Contract is authorized
to do so, the Smart Contract Layer will be able to query entries in the Blockchain Network.

2.1.3.2 Given that the entity who is requesting to create an entry via a Smart Contract is
authorized to do so, the Smart Contract Layer will be able to create an entry in the
Blockchain Network.

2.1.3.3 Given that the entity who is requesting to create an update to an entry via a Smart Contract
is authorized to do so, the Smart Contract Layer will be able to create an update to an entry
in the Blockchain Network.

SDMAY20-12 11

2.1.4 User Interface

2.1.4.1 The User Interface will allow a user, based on their authority, to request PowerCyber
Device metrics.

2.1.4.2 The User Interface will allow a user, based on their authority, to issue operator commands
on PowerCyber device(s).

2.1.5 The User Interface will allow a user to login.

2.1.6 Given that a user with required permissions to create a new account, the User Interface
shall allow the user to create a new user.

2.1.7 PowerCyber Devices

2.1.7.1 The PowerCyber Devices will receive and perform operator commands from the
Blockchain Network.

2.1.7.2 The PowerCyber Devices will report performance data to the Blockchain Network.

2.2 DESIGN ANALYSIS

2.2.1 Infrastructure Analysis

2.2.1.1 Currently, we plan on using our Blockchain Network to handle the messaging between
peers. We believe that given the need for a secure network with the need for remote access
to data, deploying a Blockchain Network will be the best solution.

2.2.2 Front-end Analysis

2.2.2.1 Currently, we plan to use a web framework to handle the UI of our software. We are
currently in the research phase for our UI because the final scope of our project has yet to
be determined, but we plan on using a software such as Node.JS for developing the front-
end due to the need for easy implementation of our API.

2.3 DEVELOPMENT PROCESS

Our team will be taking an agile approach to the project. We will be using two-week sprints with a
retro and demo at the end of each sprint as necessary. For all merge requests, there shall be tests to
accompany all new work introduced into the master branch, therefore, we will be following a Test-
Driven Development process for the project. All merge requests must pass all component and
system-level tests and be reviewed and approved by at least one other member on the project.

2.4 DESIGN PLAN

The software solution will consist of a Django API, Hyperledger Fabric distributed ledger with the
Convector suite for developing Smart Contracts, and React.js UI.

The API will process requests from the UI and make requests to Smart Contracts when necessary.
All requests made to the API, except for requests for signing in, will be authenticated requests. If
the Smart Contract Layer were to become unresponsive, the API will remain functional outside of
the interactions with the Smart Contract Layer.

SDMAY20-12 12

The Blockchain Network will consist of at least five nodes and multiple orderers to share messages
between peers. The Blockchain Network will have a Raft Ordering Service for transaction ordering.
The world state ledger will utilize CouchDB. Hyperledger Fabric cryptographic generation tools will
be used to utilize self-signed certificates instead of an external certificate authority to authenticate
interactions to and within the Blockchain Network. Measurement data will be stored on the
Blockchain Network along with issued operator commands. The purpose of doing so is to provide
and immutable transaction history of operator commands and reports of measurement data.

The Smart Contract Layer will send ledger updates to the API and to PowerCyber devices
respectively. The updates will include operator commands and measurement updates reported by
PowerCyber Devices. All updates will require endorsements from at least three nodes, given that
there are five total nodes. The Smart Contract Layer will allow users and PowerCyber devices to
invoke, through the API or directly, Smart Contract functions. These functions will be written in
JavaScript and will provide the ability to read, write, query, and delete information stored in the
Blockchain Network. The Smart Contract functions must install on at least one Peer Node and
instantiated on at least three other nodes for endorsement.

The UI will allow users to login, request measurements and metrics they are authorized to query,
and issue operator commands that they are authorized to issue. If the API were to shut down for
any reason the UI will remain responsive outside of the interactions with the API.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

An article titled “Blockchain technology in the energy sector: A systematic review of challenges and
opportunities” gives a lot of information on blockchains and how they can be used in energy
solutions. One example this article gives is Brooklyn MicroGrid, which is a blockchain-based
person-to-person energy trading platform.

The Brooklyn MicroGrid system completed a three-month trial with the community. The article
was written in February 2019. Upon further research into Brooklyn MicroGrid, it appears they are
still up and running and have future goals of expanding and having fully automated transactions.
This energy trading platform allows consumers to “sell their energy surplus directly to the
neighbors by use of Ethereum-based smart contracts” (Andoni et al). This system’s ledger records
“contact terms, transacting parties, volumes of energy injected and consumed by metering devices
and crucially the chronological order of transactions” (Andoni et al). The article goes more in depth
about blockchain potential and specifics involving the energy sector.

Our project will be looking at securing the communication network in an Energy Delivery System
through the usage of blockchain. This differs from the Brooklyn MicroGrid system because our
system will be constrained by a necessity for high quality integrity within the data, whereas the
Brooklyn MicroGrid system is concerned with the sale of an energy surplus.

SDMAY20-12 13

3.2 TECHNOLOGY CONSIDERATIONS

HyperLedger Composer, a tool used for building a blockchain network and implementing smart
contracts using HyperLedger Fabric, has recently been deprecated. To work around this, we will
investigate an alternative called Convector, supported by Hyperledger Labs. Convector provides
similar functionality that Composer provides with some additional features such as an API Server
Generator, configuration file generation, Smart Contract boilerplate code, etc. Also, convector
allows the user to make configurations to a definitions JSON file for exposing Smart Contract
functionality to an API.

HyperLedger Fabric will be used for configuring and deploying our blockchain network.
HyperLedger Fabric utilizes YAML configuration files for structuring and setting up the network.
HyperLedger Fabric also uses Docker Composer for defining, creating, and deploying the
containerized nodes to ensure all environment requirements are met. HyperLedger Fabric works
using orderer nodes that exist as the central communication for the network. These nodes ensure
consistency is maintained with the state of the Ledger. HyperLedger Fabric has a key value
database called CouchDB to deal with transaction logs and ledgers (NoSQL document store).
CouchDB is the default database for HyperLedger Fabric, therefore the best choice when working
with Fabric.

For development of our user interface and request API there are many technologies on the market
to consider. With that in mind, there are three web frameworks the team has looked into. Django,
written in Python, provides rapid development and a plethora of tools for development for teams.
Flask, also written in Python, provides a simple and flexible developer experience. Comparing the
two, Flask is most likely preferred if the focus is gaining experience and learning. Django would be
preferred if the focus is on the final product and maintainability, being the older of the two. The
final web framework we have considered is Node.js. The benefits of Node.js for our team are that
we are already doing some programming in JavaScript through other components of the project.
Also, Node.js integrates well with HyperLedger Convector, with the Convector API Server
Generator producing Node.js. For the web user interface ReactJS will be used. The team decided
upon this to give ourselves the opportunity to work with a framework that is growing within the
developer community. Additionally, ReactJS is primarily used for building single page applications,
which fits our expected solution for the web user interface.

3.3 TASK DECOMPOSITION

When stating that an implementation of a feature will be happening, this suggests that the
implementation will include the necessary source code, along with the implementation of any
appropriate tests e.g. unit, integration, smoke.

3.3.1 Requirements Gathering

3.3.1.1 Gather Functional Requirements

3.3.1.2 Gather Non-functional Requirements

3.3.2 Gain Domain Knowledge

3.3.2.1 Meet with PowerCyber research team

SDMAY20-12 14

3.3.2.2 Research Energy Delivery Systems

3.3.3 Implement a functional five node Blockchain Network

3.3.3.1 Implement CI/CD pipeline

3.3.4 Implement the Smart Contract Layer

3.3.4.1 Create, append, and query measurement and metrics data on nodes

3.3.4.2 Create, append, and query operator command transactions on nodes

3.3.4.3 Implement CI/CD pipeline

3.3.5 Implement the API

3.3.5.1 Implement endpoints for logging into software suite

3.3.5.2 Integrate with Smart Contract Layer

3.3.5.3 Implement endpoints for querying measurement and metrics data

3.3.5.4 Implement endpoints for querying operator commands history

3.3.5.5 Implement endpoints for creating operator commands

3.3.6 Implement the UI

3.3.6.1 Implement routes for querying measurement and metrics

3.3.6.2 Implement routes for issuing operator commands to specific devices

3.3.6.3 Implement routes for querying operator commands on specific devices

3.3.7 Integrate with PowerCyber Devices

3.3.7.1 Implement PowerCyber devices reporting performance data to Blockchain Network

3.3.7.2 Implement PowerCyber devices receiving operator commands from Blockchain Network

3.3.8 System-level Testing

3.3.8.1 Implement end-to-end tests for querying performance data

3.3.8.2 Implement end-to-end tests for issuing operator commands

SDMAY20-12 15

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Title: Blockchain could possibly be the wrong solution for the problem we intend to solve.

Risk: Avoid

Information: The time to complete blockchain consensus may take too long for the desired use
cases. Also, the resources required to deploy and maintain a blockchain may not be valuable
enough for the desired use cases.

Mitigation Action: We will work with the PowerCyber team to determine appropriate use cases
(measurements and commands) that would benefit from using a Blockchain Network.

Title: Team’s lack of knowledge on the domain could lead to easy to detect flaws being introduced
into the project.

Risk: Mitigate

Information: The architecture of the project could be at risk due to the lack of knowledge on the
domain. Classes, dataflow, and test assertions could be invalid resulting in a time consuming
refactor.

Mitigation Action: Gain domain knowledge by visiting PowerCyber, interviewing domain experts,
and asking questions to the client and advisor when necessary. Due to the team’s frequent two-
week sprints and high client interaction, increased communication and quick feedback can be
easily achieved.

Title: Integration of system components could fail

Risk: Mitigate

Information: The integration between the Smart Contract Layer and the API, the PowerCyber
Devices and the Blockchain Network, etc. is at risk due to the team’s inexperience with Smart
Contracts and PowerCyber Devices.

Mitigation Action: Utilize and maintain Swagger documentation and automate integration and
acceptance tests.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

● Successful communication between five nodes in the blockchain network occurs.
○ Occurs when five nodes can successfully communicate.

● Smart contracts within nodes can carry out a task.
○ Occurs when the task that the smart contract intended to carry out happens

successfully.
● Successful communication between blockchain nodes in regard to the problem domain.

○ Occurs when blockchain nodes are successfully communicating using definitions
of the data within the problem domain.

SDMAY20-12 16

● API provides reasonable responses queried by the user.
○ Occurs when the API functionality exists for all defined smart contracts and

responses are given successfully in a reasonable time interval.
● User interface makes a successful API call.

○ Occurs when the API call is triggered by the user interface successfully carries out
its function.

● User interface provides accurate and visually pleasing data.
○ Occurs when the client is satisfied with the readability of displayed metrics and

the user interface, overall.

3.6 PROJECT TRACKING PROCEDURES

We are going to use Gitlab Issues to track our progress. Gitlab Issues provides our team burndown
charts and allows us to use custom formats for tracking. We will use these issues to track individual
and team progress throughout the project. These issues include a title and description on what will
be worked on, the ability to select due dates and labels, and the ability to even assign members to
each issue. When an issue is completed, it is easily marked as so and archived, leaving a detailed list
of what was worked on for the project.

3.7 EXPECTED RESULTS AND VALIDATION

Our desired outcome is to produce and implement a suite of software that utilizes a secure
Blockchain Network and can integrate with devices used at PowerCyber. This software suite shall
add integrity to the existing system at PowerCyber.

To confirm that our solution works at a higher level the following will need to be found true by the
end of the project.

● The software suite can receive performance data from PowerCyber devices
● The software suite can store performance data in its Blockchain Network
● Users of the software suite can query performance data from the software suite’s UI
● Users of the software suite can issue operator commands to PowerCyber devices from the

software suite’s UI
● Operator commands issued through the software suite’s UI will be entered into the

Blockchain Network and distributed to the PowerCyber devices
● PowerCyber devices can receive and execute commands issued to them via the Blockchain

Network
● Removing Blockchain peer nodes does not interrupt validation and committing to the

ledger
● Removing Blockchain orderer nodes does not interrupt validation and committing to the

ledger
● Removing communications to the Blockchain Network or the API results in a displayed

error and continued responsiveness of the UI

SDMAY20-12 17

4. Project Timeline, Estimated Resources, and Challenges
For the majority of section 4, when stating that an implementation of a feature will be happening,
this suggests that the implementation will include the necessary source code, along with the
implementation of any appropriate tests e.g. unit, integration, smoke.

4.1 PROJECT TIMELINE

Tasks

Sept 3rd
- Oct
14th

Oct 15th
- Oct
28th

Oct 29th
- Nov
11th

Nov 12th
- Dec 9th

Dec
10th -

Jan 6th
Jan 7th -
Jan 27th

Jan 28th
- Feb
24th

Feb 25th
- Mar
23rd

Requirement
s Gathering

Gaining
Domain
Knowledge

Prototyping

Blockchain
Network

Smart
Contract
Layer

Implement
the API

Implement
the UI

PowerCyber
Integration

System-level
testing

Table 1: Timeline of Proposed Work Schedules

We foresee the Requirements Gathering stage to continue until Oct 14th. There are still some non-
functional requirements we need to clarify with the client. The prototyping stage is for gaining
background knowledge on the tech stack we will be working with. This should help clarify which
technologies we decide to use for the project. Implementing a Blockchain Network will take close
to a month due to the team’s inexperience with the technology and gaining access to the resources
for hosting the Blockchain Network. So far, from what we have noticed during our experiments
with Hyperledger Convector, implementing the Smart Contract Layer should not be too difficult.
Hyperledger Convector provides a simple way to define Smart Contracts and to create automated
tests for those Smart Contracts.

SDMAY20-12 18

The means of how we intend to implement the API is still under design consideration. At this
moment, we are unsure if we should use the auto-generated backend available through the
Convector Suite or by implementing a Django API to handle requests from the UI. The estimation
of implementing the API may change in the future, depending on what we learn during the
prototyping stage.

Implementing the UI shall be close to straight-forward. The framework that we use for the UI does
not depend on the decisions made for the API.

The time to complete integration with PowerCyber devices is currently unknown. The estimation
in the Gantt chart is our best guess as of right now. We will have a more accurate estimation for
this task once we have visited with the PowerCyber team.

Addressing technical debt will always be necessary for projects of this size. We will need to
constantly revisit tasks that we have completed in the past and address any updates that are
necessary at that time.

4.2 FEASIBILITY ASSESSMENT

Depending on the use cases we learn about when we visit with the PowerCyber team, the correct
use case will be chosen that is best suited for a Blockchain implementation given the latency and
data criticality constraints. Some foreseen challenges that we see as of now is the time for the nodes
to come to a consensus when a Smart Contract is executed. Depending on the requirements of the
devices at PowerCyber, the time to come to a consensus may be too slow. For example, a device
may need to update the Blockchain Network every two seconds, we can foresee our nodes taking
longer than two seconds to come to a consensus. Thus, rendering our software suite incorrect for
that use case.

If there are some use cases that we can handle due to the bottleneck of coming to a consensus
across all nodes, then our project will obsolete provide a simple and easy way for researchers to
view measurements and metrics and to issue operator commands to PowerCyber devices. While
doing so, our software suite will be providing immutable performance data and operator
commands transaction history.

4.3 PERSONNEL EFFORT REQUIREMENTS

Task Time to Perform Correctly

Requirements Gathering Total Expected Hours: 30

 Gather Functional Requirements 15

 Gather Non-functional Requirements 15

Gain Domain Knowledge Total Expected Hours: 22

SDMAY20-12 19

 Meet with PowerCyber research team 2

 Research Energy Delivery Systems 20

Implement a functional five node Blockchain Network Total Expected Hours: 20

 Implement CI/CD pipeline 20

Implement the Smart Contract Layer Total Expected Hours: 60

 Create, append, and query measurement and metrics
data on nodes

30

 Create, append, and query operator command
transactions on nodes

10

 Implement CI/CD pipeline 20

Implement the API Total Expected Hours: 45

 Implement endpoints for logging into software suite 5

 Integrate with Smart Contract Layer 15

 Implement endpoints for querying measurement and
metrics data

5

 Implement endpoints for querying operator commands
history

5

 Implement endpoints for creating operator commands 15

Implement the UI Total Expected Hours: 45

 Implement routes for querying measurement and metrics 10

 Implement routes for querying operator commands on
specific devices

20

 Implement routes for issuing operator commands to
specific devices

15

Implement System-level Tests Total Expected Hours: 45

 Implement end-to-end tests for operator commands 25

 Implement end-to-end tests for performance data 25

Table 2: Personnel Efforts Requirements per Task

SDMAY20-12 20

4.4 OTHER RESOURCE REQUIREMENTS

The only additional resource needed for our project is access to the PowerCyber facilities.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

All components within the software suite will have to agree on consistent models to represent
performance data, types of devices to interact with, and operator commands. This is yet to be
determined until we visit the PowerCyber team.

5.2 HARDWARE AND SOFTWARE

5.2.1 API

5.2.1.1 Unit tests and integration tests for the API will use the included unittest module provided
by the Django framework. With this module we will write automated tests to make HTTP
requests to our endpoints.

5.2.2 Blockchain Network

5.2.2.1 All new chaincode will be added to a chaincode subdirectory and will be tested when
relaunching the Blockchain Network.

5.2.3 Smart Contract Layer

5.2.3.1 We will be using the Chai assertion library along with the Mocha test framework for
testing models and controllers. The Chai assertion library can be used in a similar way as
Jest is used, using expect style assertions. To keep our software suite consistent, we will be
using expect style assertions in our Smart Contract Layer. The Mocha test framework will
allow for easy asynchronous testing, serially running tests, accurate reporting, and
mapping uncaught exceptions to correct test cases. Both Chai and Mocha are used by
default in Hyperledger Convector.

5.2.4 User Interface

5.2.4.1 For writing unit tests, acceptance tests, and end-to-end tests, the Jest Javascript test runner
will be used along with the React Testing Library. The Jest test runner will allow us to
access the DOM via jsdom for testing React components and to use mocks. The React
testing library will allow us to test React components without relying on their
implementation details. For end-to-end tests we will remove the use of mocks and have all
requests made to their respective endpoints.

SDMAY20-12 21

5.2.5 PowerCyber Devices

5.2.5.1 Assuming we will not have access to PowerCyber devices often, we will have to examine
some example performance data from the devices we will be working with and create a
simulation data collection to use for integration tests between the Blockchain Network and
PowerCyber devices.

5.3 FUNCTIONAL TESTING

All components of the software suite will contain their own test suites that are automated. These
test suites will consist of mostly unit tests besides the UI and API components. The UI and API
components will have unit tests and integration tests. The UI will also have acceptance tests and
end-to-end tests.

5.4 NON-FUNCTIONAL TESTING

Unit tests for making unauthenticated requests via the API and to the Smart Contract layer will be
in place to ensure that all requests must be authenticated. There will be performance tests for the
Smart Contract Layer by using simulated data from the PowerCyber devices to profile the time it
takes for all nodes to come to a consensus on Smart Contract execution.

5.5 RESULTS

During our research phase, we learned that one of the software’s we wanted to use for our project
became depreciated and this led to us having to research further into possible replacements. This
led to us using Convector, which we learned is supported by Hyperledger Labs. Due to our project
still being in the early stages, we have yet to design or test any actual software.

6. Closing Material

6.1 CONCLUSION

So far, we have gathered requirements from the client and have experimented with Hyperledger
Convector. We plan on finishing the gathered requirements phase and moving onto the
prototyping phase. By the end of the prototyping phase we will have a more detailed project plan
since we will know which technologies to use and how to integrate with the PowerCyber devices.

6.2 REFERENCES

M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. Mccallum, and A. Peacock,
“Blockchain technology in the energy sector: A systematic review of challenges and opportunities,”
Renewable and Sustainable Energy Reviews, vol. 100, pp. 143–174, Feb. 2019.

Terrorism and the Electric Power Delivery System. (2012). National Academies Press, p.1.

SDMAY20-12 22

6.3 APPENDICES

Framework and Library Documentation:

CouchDB:

http://docs.couchdb.org/en/stable/

HyperLedger Fabric:

https://hyperledger-fabric.readthedocs.io/en/release-1.4/

HyperLedger Composer (deprecated):

https://hyperledger.github.io/composer/latest/introduction/introduction.html

HyperLedger Convector:

https://docs.covalentx.com/article/71-getting-started

PowerCyber Labs:

http://powercybersec.ece.iastate.edu/powercyber/welcome.php

Django:

https://docs.djangoproject.com/en/2.2/

React.JS:

https://reactjs.org/docs/getting-started.html

Raft

https://raft.github.io/raft.pdf

